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FOREWORD 

The host for the Thirty-Eighth Conference on the Design of Experiments in Army 
Research, Development and Testing (DOE) was the RAND Corporation. It was held on 
28-30 October 1992 at the Arroyo Center of RAND in Santa Monica, California. In the 
host invitational letter Dr. Lynn E. Davis, Director of the Arroyo Center, stated that Ms. 
Sharon Koga and Major Kelvin Beam would be in charge of local arrangements. To 
conduct a conference of this size in a classified facility is a formidable task in itself, but 
they did it flawlessly down to the last detail. The participation of the excellent statistics 
group at RAND contributed to the success of the conference. 

Members of the Program Committee for this conference were pleased to obtain the 
following invited speakers to talk on topics of current interest to Army personnel. 

Speaker and Affiliation 

Professor Donald Gaver 
Naval Postgraduate School 

Professor David W. Scott 
Rice University 

Professor Nozer D. Singpurwalla 
George Washington University 

Dr. James J. Rissanen 
IBM Research Center, Almaden 

Professor L. Mark Berliner 
Ohio State University 

Title of Address 

Simulation and Modeling 

Visualization of Response Surfaces 
in Several Variables 

Statistical Methods in Software 
Engineering 

Information Theory and Statistics 

Chaotic Systems and Statistics 

In addition to the invited addresses, there were fourteen contributed papers, four clinical 
papers, three papers in a special session, and one paper in a poster session. Most of 
these informative talks covered areas associated with statistical design and analysis of 
experiments. 

Dr Malcolm S. Taylor of the Army Research Laboratory at Aberdeen Proving Ground, 
Maryland was the recipient of the Eleventh U.S. Army Wilks Award for contributions to 
statistical methodologies in Army Research, Development and Testing. In as much as the 
major part of his work has been to help military people with real problems that had to 
be solved he has constantly and effectively employed a widely ranging arsenal of 
mathematical specialties to assist his clients. His published research includes work in 
computer science, experimental design, extreme value theory, nonparametnc testing, 

in 



resampling theory, survival theory, fuzzy set theory, non-Newtonian flow, nonlinear 
programming, linear models, information theory, vulnerability theory, artificial intelligence, 
and control theory. Over the years, Malcolm Taylor has worn many hats, worked 
effectively on many problems, always in the best traditions of U.S. Military Science. 

On 26-27 October 1992, two days before the start of the Design of Experiments 
Conference, a two day tutorial entitled "Statistics for Spacial Data" was held. Its speaker 
was Professor Noel Cressie of Iowa State University, Ames, Iowa. The main purpose of 
these seminars is to develop, in Army scientists, an interest in and an appreciation for the 
statistical methods that are needed to analyze experimental data. 

The sponsor of these conferences is the Army Mathematics Steering Committee. 
Members of this committee would like to thank the RAND Corporation for hosting this 
conference and Dr. Lynn Davis for serving as Chairperson on local arrangements. 

PROGRAM COMMITTEE 

Carl Bates Robert Bürge Francis Dressel 
Eugene Dutoit Malcolm Taylor Carl Russell 
Douglas Tang Henry Tingey Jerry Thomas 
Barry Bodt Gerald Andersen Jock Grynovicki 
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MODELING AND SIMULATION IN THE MILITARY: 
STATISTICAL ISSUES AND OPPORTUNITIES 

DONALD P. GAVER 
PROFESSOR OF OPERATIONS RESEARCH 

NAVAL POSTGRADUATE SCHOOL 
MONTEREY, CALIFORNIA 93943 

1. INTRODUCTION 

The use of modeling and simulation in the DoD has increased explosively in 

recent years, and such growth can be anticipated to continue. The reason is the 

need for credible and economical tools to assist in the organization, combination, 

focusing and communication of knowledge, e.g., historical and theoretical 

scientific information, new data, and human judgment, in order to assist 

decision-makers and technologists with their tasks. Another rapidly growing 

area involves the training of human operators, such as airplane pilots or tank 

operators. The use of an abstract mathematical or "computer" model in place of 

real-life experimentation is simply mandatory in most of the situations 

encountered by military decision makers: it is clearly not possible to test 

proposed or embryonic weapon systems in a realistic variety of actual combat 

environments, nor to appraise their effectiveness when they are embedded in 

military organizations and employed to reach operational goals. The operational 

test and evaluation communities of the services and at the DoD level strive to 

subject new systems to honest testing under field conditions to the extent that 

resources permit, but such tests are themselves actually physical models of true 

combat and may not be entirely satisfactory replicas thereof. Likewise, it is 

infeasible to train operators and to educate commanders entirely in the field, so 



synthetic environments (models) of increasing sophistication are being devised 

and utilized that place the "man -or person- in the loop". 

The purpose of this paper is to provide an overview of some specific current 

modeling situations that should provide stimulation and challenges to the 

general analytical, but specifically statistical and operations research, 

communities. The plan of the paper is as follows. First we will review the 

definitions of "models" and "simulation" that have been proposed by the 

relatively new Defense Modeling and Simulation Agency (DMSO). The latter was 

established by the Congress in order to coordinate the many modeling efforts 

proposed and being pursued in the US military. Next a brief explanation will be 

given of two currently active areas of modeling and simulation interest: Cost and 

Operational Effectiveness Analysis, and Future Theater Level Modeling. Attempts will 

be made to indicate the needs for statistical thinking and analysis as 

opportunities arise. There then follows a discussion of a number of modeling 

areas that have been identified and enthusiastically worked on, and others that 

have been less popular in the past but are likely to become of emerging interest 

in future. Some attempt is made to point out modeling areas that have been 

developed and actively explored outside the military arena, the approaches and 

techniques of which may be worth borrowing by military modelers. I interpolate 

summaries of mathematical approaches to several quite specific (sub) models 

that may be novel and provocative to readers. For reasons of personal interest 

and general concern I attempt to identify sources of variability and uncertainty 

throughout the discussion of specific areas and models. 

It can escape no-one that the models and simulations of the types reviewed 

here are abstract simplifications of reality, and hence are, to some possibly 

extensive degree, in error. There is a justifiably active concern witn under- 



Standing and limiting that error, while preserving the advantages of flexibility 

and communicability that model-based, or model-assisted, analysis provides. 

There is an active interest, and some healthy controversy, concerning the so- 

called Validation, Verification and Accreditation process and its proper and 

defensible definition and practice. This paper concludes with a few recent 

references to the literature of this subject along with some comments; no doubt 

many readers will have their own reactions. The last word is yet to be written. 

2. DEFINITIONS 

The reader may find it useful to see definitions of relevant terms, as 

provided by DMSO. These are as follows; see DoD 5000.2, Aug. 1992. 
• Model: A physical, mathematical or otherwise logical representation of 

a system, entity, phenomenon or process. 
• Simulation: A method for implementing a model over time. Also, a 

technique for testing, analysis, or training in which real-world systems 
are used or where real world and conceptual systems are reproduced by 

a model. 

The DMSO also puts models into classes, as follows 

Computer Models: Systems and forces and their interaction are primarily 

represented in computer code. There may be some human interaction with the 

model while it is running. 

Manned Weapon System Simulations: Individual weapon system are 

modeled (e.g. by a simulator) and are typically controlled by a human operator, 

(e.g. SIMNET). 

Instrumented Tests and Exercises: Actual troops, weapon systems and 

support systems interact in as real an environment as possible, with 

instrumentation being used to collect and distribute status data on the force 

elements, (e.g. National Training Center). 



It is recognized that modeling and simulation, as briefly described above, is 

potentially useful in various areas of interest to the military (but, of course, also 

in the civilian sector). Thus: in education, training, and military operational planning 

and analysis; in research and development for requirements definition, engineering 

design support and system performance assessment; in test and evaluation for 

early operational assessment and operational test design (and outcome data 

analysis); in production and logistics, i.e., for system producibility assessment, 

logistics requirements and distributional procedures (stocking locations and 

levels, issues of replacement and repair). There are many other areas in which 

modeling and simulation are being conducted, and in which opportunities exist 

for doing so more efficiently and credibly. Some of these will be identified in 

later sections of this paper. 

3. COST AND OPERATIONAL EFFECTIVENESS ANALYSIS 

In the acquisition process that procures new military systems for the U.S. 

armed forces there are several stages. In the first of these a mission area deficiency 

is identified and the appropriate service branch examines the feasibility of 

removing it by modification of the use of existing systems, i.e. by changes in 

tactics, training, or doctrine. Operational modeling and simulation, including 

wargaming, clearly play an important role in this examination process. If the 

deficiency is perceived to persist, a formal requirement for a new system is 

generated that specifies the critical operating capabilities of the proposed new 

system; this operational need document is subject to approval at Milestone 0 of 

the acquisition process. If approved, a concepts generation and acquisition 

management process begins. The latter identifies several alternative systems 

concepts and initiates studies of their relative cost-effectiveness; the result is 

presented to a decision-making body known as the Defense Acquisition Board in 



the first Cost and Operational Effectiveness Analysis (COEA); this is called 

Milestone I. Approval at this stage launches continued analysis of the competing 

conceptual systems and an initial prototyping. A second COEA, created at 

Milestone II, again assesses the impact of the prospective changes on force 

effectiveness and battlefield employment; comparison of the costs and 

effectiveness of the systems is made so as to select one system for development. 

This latter COEA is coordinated with a Test and Evaluation Master Plan (TEMP) 

that specifies the actual testing of the system. 

Since all systems under examination are in a conceptual state during the 

above process a considerable amount of modeling and simulation must be relied 

upon to carry out the various steps in performing a COEA. We will examine and 

illustrate some current practice in later examples, but first mention some basic 

questions and issues that are universally important. 

Modeling Issues and Questions 

Here are some of the important issues and questions that arise when a 

proposed new system is to be evaluated. 
• Is an appropriate and satisfactorily-validated, verified and accredited 

computer model or man-in-the-loop simulation available to address cost 
and performance issues associated with the prospective new system? Is 
the proposed modeling and simulation system documented, transparent 
and well-understood enough so as to provide reasonably trustworthy 
results for the specific application? 

• Are appropriate data bases available for use in the model? 
• Have appropriate measures of system effectiveness (operational and 

cost) been identified? 
• Is the method of cost estimation, e.g. top-down parametric and/or 

bottom-up engineering sufficiently accurate? Has adequate complete- 

ness of the cost estimates been achieved? 



•   Have uncertainties in system effectiveness estimates (operational and 
cost) been recognized, and, to the degree possible, quantified? 

The answers to the above questions are operationally binary: Yes, or No; if 

No then further attempts at improvement must be made, best with the aid of 

appropriate statistical technology and viewpoint. There remain important 

philosophical questions concerning the manner in which the entire enterprise is 

conceived and carried out in practice; healthy skepticism but a sense of realism 

must be balanced. Such questions are being addressed by the modeling 

community, e.g. the Military Operations Research Society, and by others, e.g. at 

Rand, cf. Paul Davis (1993). There follow brief accounts of two COEA studies that 

should illustrate the activities required, the difficulties, and the opportunities for 

statisticians and operations researchers. 

Army: Acquisition of New Infantry Anti-Armor Weapon System-Medium 

(AAWS-M) 

The Army currently fields a man-carried anti-tank weapon, Dragon, that 

wire-guides a missile to its target. A replacement for Dragon has been proposed; 

it is called Javelin and operates in a fire-and forget mode, meaning that the 

operator need not remain vulnerable to return fire while the missile is being 

guided to the target, as is the case with Dragon. The Javelin operator/gunner is 

still exposed during the detection, launch-processing and damage assessment 

phases. 

Since Javelin is in the conceptual stage its performance on the battlefield 

must be assessed by use of models. One modeling exercise is carried out using 

CASTFOREM (the Combined Arms Task Force Evaluation Model), which is a 

two-sided event-sequenced stochastic, systemic (not man-in-the-loop) combat 

model. The situation simulated is engagement between AAWS-M teams, i.e. 



Dragon, or Javelin, and a threat consisting of heavy armor (tanks and armored 

personnel carriers). One objective of AAWS-M is to induce infantry to dismount 

from the APCs, thus slowing its rate of advance. 

An important aspect of the CASTFOREM modeling is the (sub)model of 

target acquisition imbedded therein; this is based on the so-called NVEOL 

Algorithm for visual acquisition. The latter is, in turn, based on certain accepted 

theoretical principles of human vision, but in practice has apparently given 

evidence of bias. Some attempt is made to introduce the effects of inter- 

individual random variation in the simulation but the degree of empirical 

validity thereby achieved is unclear. A considerable amount of target 

information is introduced into the model, such as the target vehicle's critical 

dimensions, its optical and thermal contrasts associated with time of day and 

year, aspect, etc. Although these, and other such steps are reassuring it is still not 

clear how well the total physical environment, including operator effect, is 

represented in the portrayal of the operational difference between AAWS-M 

alternatives. It appears that there are opportunities for additional careful 

statistical investigations to be undertaken in cooperation with other scientists and 

test personnel in this area. It should be recognized that other complementary and 

supplementary studies are made using different models, such as JANUS (which 

is man-in-the-loop) and VIC, and that these in turn must be supplemented by 

cost assessments in studies to address high-level issues, such as tradeoffs 

between AAWS-M and heavy anti-tank weapons and the use of air-defense 

weaponry in an anti-armor role. The challenge to model makers, adapters, and 

critics, e.g. statisticians, is real and will continue. 



Navy: Vertical Take-Off and Landing (VTOL) Unmanned Airborne Vehicle 

(UAV) 

An exciting aspect of future U.S. military forces is that they may well consist 

of or be supplemented by unmanned robotic elements. Such items can go where 

manned vehicles cannot, do not put humans at risk, and are small and difficult to 

detect and target. They must provide cost-effective services, e.g. information of 

use to force commanders. 

A COEA now (1993) in progress of a prospective Navy VTOL UAV, to be 

deployed on small combatants in a task force, contemplates the following 

missions: reconnaissance, surveillance, target acquisition, deceptive ECM, 

(decoying of anti-ship missiles), and damage assessment. Its measures of 

performance are payload, range, endurance, speed, altitude, survivability (as 

affected by radiation signatures), non-combat operational attrition rate, and 

achievable sortie rate, among others. Measures of system effectiveness should 

include detection rate, percent of targets identified (in addition to those by, or in 

place of, other sensors such as manned helicopters or radars), and mission 

success rate in complex operational environments. 

A COEA of such a future device must necessarily be conducted by 

simulation, using presumed actions and scenarios. An experimental simulation 

has been formulated within a DARPA-espoused program: Synthetic 

Environments for Requirements and Concepts Evaluation and Synthesis 

(SERCES). The notion is to link existing man-in-the-loop simulators: Resa located 

at NRAD (Once NOSC) in San Diego, where task force operational data is 

generated, with Simnet in Reston, VA., where a UAV development facility is 

located. Navy tactical action officers, commanders, and VTOL UAV operators 

interact to assess the operational impact of information. The question: given a 
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synthetic UAV visualization of (simulated) combat over a several-day period, did 

the UAV make a worthwhile contribution to combat outcome, as compared to 

the situation without that asset? In the network of these two simulators Resa 

provides the operational battle context and Simnet provides a detailed picture of 

what the UAV can see of the battle. 

Statisticians will recognize the challenges of the experimental design and 

data analysis problems that rise here. A foremost problem is that of dealing with 

the properties of human operators and decision-makers: their inter-individual 

differences plus the changes and learning that occur as a result of experience 

with different scenarios. Also, scenario choice only initiates chains of events that 

can end quite differently, depending upon human operator behavior (detections, 

decisions) and intervening random events. Certainly the ideas of blocking and 

paired comparisons should be important in design and analysis, but the 

differences between human capacities to adapt and accommodate to new 

challenges may overcome apparent advantages that could lead to improved 

combat outcomes. 

In summary, the design of trustworthy and defensible COEAs is a new 

challenge to statisticians who work on military problems. The challenges stem 

from the need to work with complex simulation tools that must be reasonably 

validated when linked, and that often include human operators, with their 

capabilities but occasional vagaries, as components. 

4. MODERN THEATER-LEVEL MODELS 

The theater-level models that were appropriate for planning conflict 

between NATO and Warsaw Pact forces are no longer suitable for anticipated 

conflicts of the future. Movement and maneuver, that are treated by traditional 

models, such as TACWAR, in a stylized piston fashion that ignore uncertainties 



as to ground truth, are now described as occurring over node-arc summaries of 

■the relevant terrain. Serious attempts are being made to model the impact of 

(imperfect) information concerning opponent status and intention on that 

maneuver; this requires an attempt to model the acquisition, dissemination, and 

employment of that information for force direction - in short, an attempt to 

model the impact of C3/I. The use of deception and dis-information will also be 

modeled. A strong motive will be to comprehend the special advantages of, and 

problems with, joint force operations. 

Statisticians and operations research analysts will be challenged by the 

problems of creating such models; their contributions can be directly useful in 

modeling the various uncertainties that are realistically present, e.g. in raw 

sensor inputs and in the fusion thereof. They can also participate in representing 

the decisions that evolve from the error-prone data, and in the effects of the 

ultimate conflicts that either take place or are avoided, for a valuable intro- 

duction to this area, see Hillestad, Moore, and Larson (1992), and also Youngren 

(1992); the latter is unfortunately an unpublished manuscript. 

5. MILITARY MODEL TYPES 

In this section we provide an inventory and description of a number of the 

military situations and phenomena that require models, and the types of models 

that are currently used, or are potentially useful, for analyzing those situations 

and problem areas. An attempt will be made to point out new modeling and 

analysis needs as a stimulus to statisticians and operations researchers, and also 

to research program directors; many of the needs identified are enhancements of 

existing models or suggestions for combining existing (sub)models into more 

comprehensive structures. Here are some categories of models that seem worth 

attention. 
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Attrition. This area is extremely broad and classical. The military 

connotation of the term is that of destruction or erosion of the physical force of 

one opponent, both human and materiel, by the force of the other. Possibly the 

first and most familiar models for classical force-on-force attrition are the famous 

Lanchester Laws, see Lanchester (1914). These are systems of ordinary first-order 

differential equations that resemble the rate equations of chemical kinetics and 

the predator-prey equations of mathematical ecology, see Beltrami (1987). 

Originally the equations identified just two homogeneous opposing forces, Blue 

and Red, but current formulations allow for different types of attrition forces on 

each side and account for their different attrition capabilities against each other; 

see Karr (1983), Anderson (1989), Taylor (1983). There is an opportunity also to 

model the control and coordination of such multi-type attrition forces with the 

assistance of C3 /1 assets; this opportunity has not been widely seized. 

It was soon well-recognized that the original Lanchester equations were 

candidates for a formulational face-lift, and many modifications were proposed 

beginning around the end of World War II, see Morse and Kimball (1951). An 

initial perceived defect was the determinism of the differential equation solutions 

since actual combat outcomes were widely believed to appear "stochastic" or 

"random", i.e. not uniquely and simply related to initial force levels and the 

physical capabilities of one side to kill the other; this research opportunity has 

been addressed by formulating attrition probabilistically, e.g. as a bivariate 

Markov chain in continuous time with known transition function or generator. 

Numerical solutions to such problems can be constructed and provide insights: 

one is that under realistic assumptions concerning conditions of combat 

termination the expected values of post-combat force sizes computed from such 

models do not differ much from the solutions of the corresponding deterministic 
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equations. This can be true in an asymptotic sense; see Section 6 of this paper, but 

tends to ignore the effect of imperfect information and uncertainty on the 

decision of one side to surrender or withdraw, or to exercise other operational 

options. In particular it also ignores the effect of an attempt to make such a 

decision with the aid of a calculation of risk, which would require an estimate of 

the complete probability distribution of future casualties; such a feature will 

appear in the models of the future. The stochastic Lanchesterian models available 

also do not recognize the possibility of "double-stochasticity", meaning important 

and random-like variation of the attrition parameters themselves, such as rate of 

target acquisition, rate of fire, and kill probability. The introduction of such could 

economically represent terrain and general battlefield inhomogeneities. Explicit 

modeling of doubly stochastic effects might well provide the basis for 

incorporating Bayesian control into combat models. The effect of such random 

parameter variation could be explored by simulation, but also by mathematical 

methods; see Freidlin and Wentzell (1984). 

Early Lanchesterian models were strictly attrition-focussed and did not 

explicitly account for the interaction of relative attrition and the possession of 

territory; however see Koopman (1963). Some attempt has been made sporad- 

ically to introduce the effect of information, via C3/I resources, on combat 

outcome. The subtle and intriguing area that includes information acquisition 

and utilization (and denial), maneuver, and ultimately the option of combat, 

deserves far more research attention than it appears to have received, since loss 

of C3/I capability can shatter modem combat capability as effectively as the loss 

of primary weaponry. 

Still other deficiencies in the classical formulations that are currently coming 

under study are representations of decisions to reinforce or withdraw based on 
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uncertain perceptions of the opposition's current strength. Under some 

circumstances simple discrete-time (difference equation) versions of the 

Lanchesterian scheme, but with reinforcement that is triggered by relative force 

perception and is lagged in time, can generate solutions that depend non- 

monotonically upon initial force sizes in an unintuitive way; see Dewar, Gillogly, 

and Juncosa (1991). This effect can apparently be reduced by smoothing the time 

rate of reinforcement, but is generally disturbing because it suggests the possible 

dangers of assembling larger-scaled, e.g. theater-level, models from incom- 

pletely-understood submodels. 

Information: Sources. These are other features of attrition modeling and 

Usage. Models that describe the integration of force elements in the style of 

modern theater-level combat must include accounts of information available to 

the respective commanders. Such information is obtained from various sensors 

such as satellites, manned reconnaissance flights and missions, and AUV's and 

GUV's. The raw, imperfect, and time-delayed (and enemy-corrupted) 

information as to the location, identities, speeds and directions of advance and 

apparent intentions of various opponent force units must be integrated ("fused") 

to generate a commander's perceptions that assist him to direct his own forces' 

actions. For the purpose of modeling force interactions it is not necessary, or 

desirable, to model sensor behavior in detail at the engineering "bandwidth-bit- 

byte" level, but rather to represent it from an operational perspective that relates 

measures of reconnaisance effort and coverage to probability of detection, correct 

classification as to unit type and asset portfolio, and the sizes of the various asset 

types in that portfolio, Realistic uncertainties and errors can be represented 

probabilistically; it seems to often be convenient to take a Bayesian viewpoint 

when endeavoring to combine the various information elements coherently. 
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There is precedent for such at the tactical level, e.g. to design tracking algorithms 

based on recursive up-dating ("Kaiman filters") as well as the searching 

procedures classically described by Koopman (1980), and subsequently by many 

others. The present challenge is to link models of information acquisition and 

evaluation to models for maneuver and attrition so as to depict theater-level 

combat in a meaningful way. 

Logistics. Models of demand, and re-supply, for spare parts and sub- 

systems, and also for consumables such as fuel and ammunition, have long been 

furnished by statisticians and operations researchers to military clients. The 

needs for such models, and the decision rules based on them, remain strong 

because of the current trend towards a smaller and more cost-effective armed 

force. Among the various universal issues is that of economically choosing the 

appropriate mix of repair parts, locating them geographically, and replacing 

them as they are consumed, taking account of the manner in which they should 

be used in practice—to maintain the mission availability of groups of platforms 

(aircraft, tanks) being supported. It is recognized that prediction of usage is 

difficult, so development of models that represent the ingenious adaptive 

processes often used by the best field logisticians is required; these processes 

include "cannibalization" and use of dynamic priority rules for repair and 

geographical distribution of spare parts. Also, ways to improve the efficiency of 

depot repair are of strong current interest; see Abell, Miller, Neumann, and 

Payne (1992). An area of current interest in the military maintenance and repair 

community is that of the advisability of subsystem upgrade, i.e. re-engineering or 

replacement in the face of uncertainty: The situation is generally as follows: if a 

subsystem of a major system begins to show signs of increasing unreliability and 

cost of maintenance, should it be upgraded, or replaced, considering that such a 
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change entails a substantial fixed cost and that the parent system may itself be 

scheduled for replacement after a definite time horizon? A related issue concerns 

the pros and cons of paying for stretch-out of the life of a current system instead 

of the procurement of a replacement for it. The fact that decisions must be made 

in an atmosphere of uncertainty, e.g. as to the magnitude of a newly-detected 

trend towards higher maintenance costs in the system-upgrade situation, should 

stimulate statisticians and operations researchers; see Gaver and Jacobs (1992) for 

an initial attack on the up-grade problem. In that work the occurrence of an 

adverse trend was treated as a change-point problem, (for a recent review of such, 

see Carlin, Gelfand and Smith (1992)) and uncertainties were assessed both by 

bootstrapping and by the invocation of a prior for the changepoint. 

It is clear that a failure to maintain adequate logistics support for a combat 

unit may well lead to the defeat of that unit. This suggests that targetting logistics 

may be profitable, which in turn suggests that a realistic feature of a modem 

theater-level model, as discussed in Section 4, should be its dependence upon 

adequate supplies, and the vulnerability of those supplies to an opponent's 

actions. 

Medically Oriented Models: Battlefield Casualty Management, and Environ- 

mental Toxicology 

The above-mentioned areas are important in practice but have been 

somewhat under-represented in the military statistics and modeling literature. 

The management of battlefield casualties involves triage, i.e. the process of 

making the decision as to the advantageous organizational level at which to treat 

an incoming combat casualty. Trade-off issues: casualties treated at the field level 

may be more readily returned to combat, provided they recover quickly, than if 

they are evacuated; on the other hand they occupy facilities and use resources, 
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such as hospital beds, that might be better employed for the benefit of others; for 

discussion and an explicit model and data analysis see T. Howard (1993). This 

area, which seems related to that of general emergency medical care planning 

and scheduling, offers many opportunities for applications of statistical and 

operations research techniques. 

Toxicology is concerned with the study of the effects of "poisons" on 

organisms, importantly the human body and mind. The poisons of interest are 

typically toxic chemicals that may be encountered in the workplace or general 

environment in which we live by way of inhalation or skin contact, or in food 

and drinking water. The effects of such vary considerably depending upon the 

actual dosage of particular chemicals received by individuals and the individual 

susceptibility of the recipients; the latter may be affected by personal habits such 

as smoking. Statistical issues arise when exposure and dose-reponse relations are 

to be quantified. An important current issue relates to assessment of cleanup of 

groundwater, where the toxic condition of the latter prior to cleanup action is the 

result of a complex mixture of chemicals. An option for assessing the reduction of 

toxicity achieved by the cleanup procedure is to expose animals or fish to 

samples of the original water and to the water after cleanup; evidence of toxic 

effect, such as prevalence of liver neoplasms among those exposed to the 

untreated as compared to those exposed to the treated, water is used as an 

indicator of the effectiveness of the treatment; see Gardner 

Many statistical issues arise in the planning of such studies, and the 

subsequent data analysis. 

The above listing of topics is intended to be illustrative and stimulative; it 

does not pretend to be comprehensive. I next informally review some specific 

modeling topics that are among those of current personal interest. 
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6. STOCHASTIC MODELS FOR ATTRITION, AND FOR SURVIVAL 

AND RELIABILITY IN RANDOM ENVIRONMENTS 

It is well-recognized that quantitative submodels used to describe military 

combat dynamics and their outcomes within all theater models can appropriately 

be formulated as non-linear, but also should be "random" or "stochastic" in one 

of several senses. Such challenges often cause modelers to resort to outright 

table-look-up to settle attrition outcomes, where the tabled values are empirically 

derived from historical data, or else from high-resolution submodels (ADCAL). 

However, for reasons of flexibility, convenience, and transparency, as well as face 

validity, analytical or mathematical models patterned after the classical 

Lanchester attrition models, cf. Taylor (1983) may be invoked to settle or predict 

combat outcome. The original versions of such models had many simplicities 

that have been, and further can be, removed in various fashions. This section 

reviews some such attrition model elaborations, emphasizing the possibilities of 

representing stochastic variability in the mathematical representation of attrition 

outcomes, thus avoiding or rninimizing laborious Monte Carlo sampling. 

A second area that is a candidate for continued statistical and probabilistic 

attention is that of reliability and survival, where the latter topic is interpreted 

broadly. In the second part of this section we describe the possible effect of 

environmental variability, first on an equipment reliability model, next with 

extensions to other areas as well. 

Beyond Lanchester: Stochastics, Suppression, Reinforcements, and a Caution. 

Suppose Red and Blue forces have been in combat for time t. Then a simple 

stochastic or probabilistic description of their mutual attrition within (t, t + dt) is 

dR(t) = -ßWMdt + Jß(t)B(t)dWR(t) (6.1) 
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and 

mt) = -p(t)R(t)dt + Vp(OR(t)dWß(0 (6.2) 

The first, (6.1), says that the decrease in R force size is a sum: first the mean effect 

of attrition by B in time period of duration dt (governed by an attrition rate ß(t)), 

the second is a random component, represented as normal or Gaussian with 

standard deviation equal to the -Jmean = -Jß(t)B(t); d\VR(t) is Gaussian white 

noise with mean 0 and variance dt, the increment of a standard Wiener process. 

The latter approximately represents the situation in which the change in the size 

of R force in it, t + dt) is viewed as locally Poisson, with mean, and hence 

variance, ß(t)B(t). Clearly such an approximation will work best when Bit) is 

relatively large, i.e., when the initial force B(0) is large and t is not too long, so 

that neither Bit) nor R(t) are close to zero; according to usual doctrine one or the 

other force will withdraw if losses are great enough, or its perceived force ratio 

becomes sufficiently unfavorable. 

A discrete-time simulation of this model can easily by performed: split time 

into intervals of length A (e.g., hours or days); then calculate force sizes R(A), 

R(2A), R(3A), starting from R(0) by evaluating the recursions 

m+A)=m) - ß(tmt)A+jßw{t)£wR (6.3) 

where AWR is normal with mean zero and variance A; a complementary 

recursion holds for B, with 4Wg and AWR initially independent. Such a 

simulation is much quicker to perform than is one for a simple pure death 

Markov process replacement for deterministic Lanchester. Furthermore, the 

effect of making attrition rates ß(t) and pit) stochastic processes, e.g. so as to 

reflect environmental variation, is easily traced. 
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It is possible to justify (6.1) and (6.2) mathematically by initially specifying 

(R(t), B(t)) as Markov with transition rates or generator 

P{m + dt) = Rit) -1, Bit + dt) = Bit^Rit), B(t)} = ßit)Bit)dt + oidt) 

p{R(t + dt) = Rit),Bit + dt) = Bit) - l\Rit),Bit)} = pit)Rit)dt + oidt)       (6 4) 

and 

P{Rit + dt) = Rit ),Bit + dt) = Bit)\Rit)Mt)} = 1 - [ßit)Bit)+pit)Rit)}it + oidt) (6.5) 

and introducing the normalized variables 

Xit) = [Rit)-arit)]/^ 

Yit) = [Bit)-abit)]/4i (6.6) 

for a »1, e.g. a = B(0) + R(0). If these are introduced into characteristic function 

(ch. fen.) equations for (R(t), Bit)), i.e. Fourier transforms of forward Kolmogorov 

equations, and orders of a identified then there results 

~ = -ßWit), and ^ = -p(t)rit) (6.7) 
dt dt 

essentially the deterministic Lanchester square-law equations. Additionally, the 

limiting (a-*>°) ch. fen. differential equation is that of a bivariate Ornstein- 

Uhlenbeck process, from which the variance-covariance structure of the random 

variation of (Rit), Bit)) at any time f can be deduced; furthermore R(t) and Bit) 

are approximately jointly normally distributed. The above allows analytical 

calculation of the probability distribution of the force advantage of one side vs. 

the other at time t after combat begins, e.g. the advantage of R over B is R(t) - 

Bit) in terms of initial force sizes and attrition rates, thus providing a decision* 

maker with an appraisal of combat risk that augments simple mean comparisons. 

Analysis of historical battles, e.g. by Hartley (1990, 1991), suggests that 

attrition rate is better described by a non-linear function: replace ß(t)B(t) in (6.7) 
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by a suitable function of both states ß[B(t),R(t),t], To the extent that such a 

function itself has a random component, calculations may still be possible. 

Invocation of small random perturbation theory, e.g. Freidlin and Wentzell 

(1984) appears suitable. 

The above analytical approach can be extended to account for other realistic 

operational effects. The first of these is suppression, wherein the effect of 

opponent, e.g. B, fire is to render certain forces temporarily incapable of active fire 

themselves; restoration may occur after a time. Thus the dynamics become 

expressed in terms of the state variables RA(0, the number of those active, Rs(t), 

the number of those suppressed, along with BA(t) and B$(t). The equations 

become, first for active R: 

dRA(t) = -ßA(t)BA(t)dt - ßs(t)BA(t)dt + ßRSA(t)Rs(t)dt 

+^jßA(t)BA(t)dWRA(t) + Vj5s(0ß^(0dWRy4s(f) 

+^RSA(t)RS(t)dWRSA(t) (6.8) 

with a complementary setup for B. For the suppressed R, 

dRs{t) = ßs(t)BA(t)dt-ßRSARs{t)dt + ^jßs(t)BA(t)dWRAS(t) 

+^ßRSA^S^d^RSA(t) (6.9) 

A second effect is that of reinforcement; a complement is withdrawal. First, a 

simple generic reinforcement model is 

dR(t) = -ß(t)B(t)dt + öR(t)H(R(t - r),B(f - x),t - z)dt 

+ STOCHASTIC TERM. 

Here it is assumed that reinforcement rate at time t, portrayed by $RH, is 

controlled by system state at previous, lagged, time t-v, more general and realistic 

is a distributed lag model. Two versions of H are a step function of the form 

HR(0,B(0H      u      • (6-10) 
0 otherwise. 
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This calls for Red reinforcement at rate dR(t) if the Blue to Red force ratio 

becomes sufficiently unfavorable (> h); otherwise none. Alternatively, smoothly 

increasing function may be more realistic, e.g. 

H(R(r),B(0) =      [m/mY , for 1< p = o(a) (6.11) 
(hf+(B(t)/R(t)f 

Use of the latter facilitates the asymptotics described earlier. Withdrawal models 

may be similarly constructed. 

Work by Dewar, Gilloghly, and Jancosa (1991) at Rand on discrete-time 

deterministic Lanchester systems that allow for abrupt lag-governed 

reinforcement suggests that a disquieting behavior of solutions may occur: an 

unintended and initially unsuspected non-monotonicity of "advantage" from an 

increase in force size of one opponent. The cause is not completely understood. 

Preliminary examination, by a student at the Naval Postgraduate School, 

indicates that tight time-concentration of a large reinforcement is associated with 

the effect; if the reinforcement "time" is spread out the effect tends to disappear. 

Discovery of the phenomenon suggests that caution is required when simple 

sub-models are uncritically incorporated into larger theater-level models. 

Survival and Reliability 

Situations that involve survival occur widely in both military and civilian 

applications. Military forces attempt to threaten or reduce the survival of 

members and physical assets of the opposition while guarding their own. An 

essential part of this activity is the detection and identification and location of 

opponent force elements by use of C3I assets while surviving such efforts by the 

enemy. Since sophisticated equipment is often involved, its survival or reliability 

is important. The survival of both military and civilian populations when 
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confronted with environmentally transported chemical pollution is of growing 

concern. There are other examples. A common mathematical thread links some 

of these. 

Probability models have traditionally been applied to described the time to 

failure of equipment components and systems: if Ts represents the random 

lifetime of an equipment under operational use then ^s(t)-l- Fjs(t) = P{T$ > t] 

is commonly called the survivor function. Modeling a system survivor function in 

terms of its components should be done in terms of the system structure, cf. 

Barlow and Proschan (1965); the latter reflects aspects such as redundancy. 

Typically the modeling assumes that components fail independently in 

accordance with given distribution functions. Not infrequently the simple 

exponential is used in applied work. 

Such models have been useful, and are used, yet they fail to reflect both 

individual and environmental components of variation that may affect failure 

rate parameters, and hence the distribution of failure times. Consider a series 

system of n components that, for the moment, are viewed as nominally 

indistinguishable in failure propensity. In addition each component of the system 

is exposed to a common but randomly fluctuating stress regime. Then the 

probability that the system survives for time t may be modeled as follows: 

P{Ts>t\Xl,X2,->KMt)} = f[exp[-{Xit + A(t))] (6.12) 

where A; (i=l,2,.. .,n) are independent with distribution/density F(t) (fit)) and A(t) 

is the cumulative environmental hazard at time t. Then unconditionally 

P[rS > t] = (/;i('))nE[exp(-nA(0)] (6-13) 
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If A(t) is infinitely divisible it can be realized as compound Poisson, i.e. the 

varying environment occurs as a series of shocks. Consequently 

E[exp(-n/i(*))] = exp(-#n;l-£(«))) (6.14) 

with T? the shock rate and g the Laplace transform of shock magnitude. One 

alternative is that A(t) be a gamma process, with 

.x -au f/v,,^-1 

P{A(t)<x}=\e     {   /\   adu (6.15) 1        J  Jo       r(ßt) 

in which case, putting ß=&, 

E[exp(-nvi(r))] = exp(-/fcln(l + n / a)) (6.16) 

Note that for the above model of environmental variation the environmental 

hazard component is linear in t but sublinear in n; conventional models that do 

not recognize environmental variability exhibit hazard dependence linear in n. 

Examine next the effect of the individual variation, expressed by /^(0- If A 

comes from a gamma population, 

fk(x) = e-ax{ax)b-l/nb) (6.17) 

then the survival probability takes the form 

P{TS > t} = (1 +11 aybn{l + n I a)-ßt (6.18) 

so here the individual hazard component is linear in n and sublinear in t, again 

deviating from the behavior of conventional models. The particular skew 

symmetry of the dependence on n and t in the formula (6.18) is a consequence of 

the choice of gamma variation. Note that still greater sublinearity of dependence 

upon n in the environmental hazard component can be obtained by replacing ßt 

in (6.15) by the subordinating process ßt). If the latter is again made gamma 

(6.16) becomes 
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fy-nA <»] = exp(-#[ln(l + ln(l + n I a) / a)]) (6.19) 

The hazard thus exhibits a dependence on n that increases like In In n rather than 

In n, certainly far more slowly than that of the conventional model, which is at 

rate n. Of course such models are hypothetical and illustrative only, but serve to 

indicate the type of qualitative behavior that may broadly occur in weakest-link 

series systems when conventional models are plausibly modified. 

Final comment: the previously-described model may be appropriate for 

representing the detection-survival time of an approaching target by a system of similar 

(not identical) sensors, operating in an environment of varying visibility. The model 

shows that survival probability does not decrease geometrically with number of 

sensors, n, as would be true with simple independent constant-environment 

models. The reason is that all sensors discussed are sensitive to the same 

environmental fluctuations. For improved performance a varied portfolio of 

sensor performance sensitivities is required. 

7. THE VERIFICATION, VALIDATION, AND ACCREDITATION 

("W&A") OF MODELS 

Since all models, no matter how complex they may be, are approximations 

to reality it is natural to question the adequacy of the representation provided by 

a particular model for the specific purposes intended. The current terminology 

for such general questioning activity has come to be known as VV&A, or 

verification, validation, and accreditation. As models are increasingly viewed as 

attractive supplements or alternatives to either unassisted expert opinion or 

judgement, or to excessively costly — even practically infeasible — field 

experiments, concern for workable and defensible definitions and procedures has 

intensified. Attractive as they may be, model-based analyses must often be 
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defended. The purpose of this section is to point out some of the current thinking 

and literature on the subject without attempting to be encyclopedic. For a 

systematic and current review of the subject the reader should consult a 

forthcoming Military Operations Research Society (MORS) monograph edited by 

Dr. Adelia Ritchie. For a currently available discussion see Davis (1992); the latter 

provides an overall perspective, some useful check-list and sanity-check 

reminders, plus good historical references. 

Very informally, verification refers to the determination that a model 

realization, i.e. as a collection of interlinked numerical algorithms and submodels 

or modules in the form of a computer program, actually represents the the 

intention of the modeler. In the verification process the modeler, and often an 

independent party, reviews for relevance and accuracy the subject-matter 

information, logic, and science behind the equations and algorithms in the 

model; ideally, the details of this examination should be adequately documented 

but this ideal may not always be achieved. Simplifying assumptions made for 

convenience should be revealed. Then, the techniques used to solve equations 

and exercise algorithms should be made explicit and justified; this includes 

specification of any pseudo random number generation processes or Monte 

Carlo devices or "swindles" used to reduce sample size, as well as statistical 

methods used to specify point-estimates and their uncertainties, e.g. by standard 

errors and confidence limits. Suspicion should be aroused if simulation estimates 

are   not equipped with  some estimates of their uncertainty, or  if  the 

methodologies used appear inappropriate (e.g. because of unwarranted 

assumption of independence, or dependence on particular distributions without 

sensitivity check). A natural and useful verification tool or approach is to check 

the model's output for special cases in which the results can be calculated 
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independently, ideally in nearly closed form, or "on the back of an envelope". 

Clearly there are many tasks for statistical and operations research scientists in 

the verification process, not the least of which is to verify that appropriate data 

can be found to evaluate a model's parameters. In many cases such data may not 

be based entirely on physical observations but will inevitably emerge, at least in 

part, from expert judgement. Statistical attitudes 

Again informally, validation aims to ensure that, given suitable initial 

conditions and parameter values, a model can produce predictions that agree 

satisfactorily with real-world outcomes. The meaning of "satisfactorily" has been 

expanded to "adequate for the purposes of the study of which it is part" by Miser 

and Quade (1988) quoted by Hodges (1991). Hodges chooses the words bad model 

to refer to a model that has not been tested and found adequate, or validated in 

traditional scientific fashion, i.e. by empirical comparison of predictions to 

relevant observational data. Presumably one that has been so tested and found 

adequate in some context is good (in present-day street parlance such, if they can 

be found, are called baaad). The dichotomous labelling is convenient, but is itself 

an abstraction for something more diffuse and vague that must be expanded 

upon and made specific if the potential user is to consider dependence upon 

model implications. It seems conceivable that a model labelled bad given certain 

exposures to reality, or lack thereof, could become good under others, and the 

reverse. Thus it may be desirable to try for an economical description of model 

credibility status that provides more information to a prospective user or client 

than a simple stamp of approval /disapproval. It is well-recognized that many 

useful military models, particularly those of engagement or combat using 

conjectural future technology, can never be validated in a totally empirical- 

scientific way. But some such have more face validity than others or were 
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constructed by credible craftspersons and thus may have a kind of genetic 

credential. In short I contend that all models that are not empirically validated 

are not equally dubious; many are quite useful to- and used by- responsible 

decision-makers. Since they will wish to appraise and evaluate any models, users 

and analysts are deserving of, and grateful for, careful and complete 

documentation at a technical level. 

Note that frustration with model validation is not confined to military 

combat modelers but, for example, plagues those concerned with acquiring and 

positioning appropriate levels of logistics in a theater, with planning for the 

medical treatment of combat casualties, and with assessing the health effects of 

environmental pollution. Perhaps in time a generally accepted approach to the 

validation questions will appear. It seems possible that the statistical literature on 

inference from observational data, as expounded by Cochran and D. Rubin, is 

relevant. 

The decision that a particular model is suitable for a given purpose, i.e. for 

supplementing field tests in operational test and evaluations or particularly in 

COEA, is called accreditation. In order for a model to be credibly accredited, the 

model itself must be well-understood and verified and validated (to the degree 

possible), and it must be capable of answering questions relevant to the 

particular application. It should be helpful to know that the model has been 

previously used for a given purpose similar to the present one (e.g. missile 

survivability or reliability testing), and that the model's predictions were similar 

to later real-world experience; such information may not be readily available, 

either because it does not exist, or perhaps because it is unknown to the agency 

responsible for carrying out the present application. A handy compendium of 
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models that have been used with success in certain classes of applications could 

be very useful. 
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Abstract 

The use of a boresight device to align the muzzle of a tank's cannon with its fire control 
system is one of the fundamentals of tank gun accuracy. Various systems and devices have been 
used to accomplish this task, ranging from crossed strings to mark the bore centerline to 
precision optical devices that can cost tens of thousands of dollars. There are several optical 
devices currently in use with the U.S. Army's testing facilities and with line units of the army. 
This paper focuses on a test that compared five different types of boresight devices — from its 
design, to implications for improving tank gun accuracy learned during the ensuing analysis. 

I. Introduction 

In the ongoing effort to improve the effectiveness of U.S. Army weapon systems, much time 
has been spent in the study of tank gun accuracy. The overall accuracy and precision of tank 
weaponry is influenced by many factors, one of which is the alignment of the cannon muzzle with 
the fire control system (FCS). The procedure by which this is accomplished is known as 
boresighting. The optical instrument used in the procedure is referred to as a boresight device, 
or simply a boresight. 

To boresight the tank, the device is inserted into the muzzle of the cannon. The cannon is 
moved until the reticle seen through the boresight's eyepiece is centered at a target whose range 
is known. Then the floating reticle of the gunner's primary sight (GPS) is moved by toggle 
switches until it is centered onto the target also. The FCS computer then ^determines the 
azimuth and elevation angles between the centerlines of the cannon and the GPS, thus properly 
boresighting the tank. 

Various systems and devices have been used to boresight a tank, ranging from crude crossed 
strings to the high-quality optical devices of today. No matter which method or device is used, 
ultimate accuracy depends on repeatability from occasion to occasion, even when different 
gunners boresight the tank. Furthermore, the current Army concept of a fleet zero, instead of an 
individual zero, implies that calibration with a boresight must be consistent among tanks and 
among devices. 

An important property of any boresight is that its optics be parallel with the muzzle 
centerline axis. When this is true, the boresight is said to be perfectly collimated. Usually a 
device will be not perfectly collimated, but may be within certain specifications established by the 
manufacturer. When a device is "out of collimation" it must be adjusted before it may be used. 
A boresight that the field soldier is permitted to adjust is said to be collimatable. Otherwise, the 
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adjustments may only be made by qualified personnel at a maintenance facility. 

To compensate for any imperfections in a boresight that may still be within collimation 
specifications, some manufacturers recommend a two-stage boresighting procedure. That is, 
after boresighting is completed, the device is rotated 180 degrees in the muzzle and a second 
boresighting is performed. The results of each boresighting event are then averaged to 
compensate for the imperfect collimation. 

This presentation describes a test designed to compare the boresights of five different 
producers, hereafter denoted as Boresights A through E. The boresights differ in several ways 
such as reticle pattern and thickness, magnification, and muzzle support. Two devices from each 
producer were tested. The ten individual devices will be denoted by Al, A2, Bl, B'2, . . ., El, and 
E2. In addition, comparisons were made between different devices of the same type, different 
gunners, and different tanks. 

II.  Test Plan and Analysis -- Part I 

The test was conducted in two parts. The primary objective of Part I was to obtain 
estimates of the total boresighting error. This error is actually a combination of several 
component errors including 

1. the variation of boresight placement in tube, 

2. changes in the geometry of the tube between readings (e.g., thermal bending), 

3. the inability to make very precise movements of the cannon, 

4. drift in the muzzle pointing angle between the time that the gunner completes laying the 
gun until angular measurements are read and recorded, 

5. the variation of eye placement on the eyepiece, and 

6. the inherent inability to read the same exact point on the target every time. 

The test matrix for this part of the test is shown in Table 1. Six test personnel were 
employed as the gunners. The test was completed in three days, using two gunners each day. 
Each gunner boresighted each of the ten devices three times. The sixty boresighting events of 
each day were conducted in a completely randomized order. To broaden the range of the test, 
three tanks were used, one on each day, thus confounding tank effects and day effects. 

The standard deviation of the three readings for each gunner/device combination was used as 
the measure of dispersion, or repeatability. By pooling, an overall dispersion for each boresight 
device was obtained as shown in Figure 1. (Note: units are withheld from all figures due to 
classification restrictions.) 

In both azimuth and elevation, the variation of Boresights B, C, D, and E is statistically the 
same. This variability is just slightly larger in elevation than in azimuth^Boresight A, however, 
has a dispersion estimate that is twice that of the other devices; and in elevation its estimate is 
three times that of the other devices. 

32 



Table 1. Test Matrix for Part I. 

Tank/Day Gunner 

Boresight 
A 

Boresight 
B 

Boresight 
C 

Boresight 
D 

Boresight 
E 

Device 
Al 

Device 
A2 

Device 
Bl 

Device 
B2 

Device 
Cl 

Device 
C2 

Device 
Dl 

Device 
D2 

Device 
El 

Device 
E2 

1 
a 

(x, y) 
x, y 

(x, y) 

(x, yj 
x, yj 

(x, y) 

(x, y) 
x.y 

(x.y) 
M (x.y) 

x.y) 
(x.y) 

(x, y) 
(x, y 
(x, y) 

(x,y) 
[x.y) 
(x.y) 

(x,y) 
(x.y) 
(x. y) 

(x.y) 
(x. y) 
(x.y) 

(x,y) 
(x, y) 
(x.y) 

b 
(x.y) 
(x.y 
(x. y) 

(x, y] 
(x, y) 
(x, y) 

(x, y) 
(x, y) 
(x, y) 

(x. y) 
x, yj 
(x.y) 

(x, y) 
(x, y) 
(x, y) 

(x, y) 
(x, y 
(x, y) 

fcJ) 
(x.y) 

(x.y) 
(x. y) 
(x. y| 

(x,y) 
U, y) 
(x.y) 

(x,y) 
(x, y) 
(x. y) 

0 

c 
same as above 

d 

3 
e 

f 

Figure 1.  Overall Dispersion of Muzzle Pointing 
Angle for Each Boresight Device, Part I. 

Elevation 

Boresight A 

Boresight C 
■ Boresight B 
■ Boresight D 

Boresight E 

.2 
Spooled Azimuth 

A second objective of Part I was to evaluate the effect of several factors on the boresighting 
process. These factors were Boresight Type, Device-within-Type, Gunner, and Tank. 

Simultaneous hypothesis tests for these variables and their interactions were performed 
through a mixed-model analysis-of-variance (ANOVA). The design treated Tank Gunner and 
Device-within-Type as random effects and Boresight Type as a fixed effect with Devicc-within- 
Type  nested  under  Boresight Type and  Gunner  nested under  the block.ng variable   Tank. 
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Separate analyses were performed on the azimuth and elevation muzzle pointing angles, 
respectively referred to as X and Y. The expected mean squares and F (or pseudo-F) ratios 
appear in Table 2. 

Table 2.  Expected Mean Squares and F Ratios. 

Source df EMS F ratio 

T [ Tank ] 2 <r2 + 3aGD + 6<4D + 30<rG + 60<4 

G(T) [ Gunner ] 3 c\ + 3<7GD + 30<rG 

B [ Boresight ] 4      <r2 + 3<rGD + 6<rgB + 6<4D + 12crfB + 18<rg + 360B 

D(T) [ Device ] 5 a\ + 3<rgD + Safe + 18a2, 

T x B 8 <r- + 3<rGD + 6<rgB + 6<rfe + 12^ 

T x D(B) 10 a- + 3ff5D + 6<7fD 

G(T) x B 12 <r2 + 3<rGD + 6ff&, 

MST + MSGD 

MSG + MSTD 

MS0 

G(T) x D(B) 12 v\ + 6<rG GB 

MSGD 

MSB + MSTD 

MSD + MSTB 

MSD 

MSTD 

MSTB + MSGD 

MSTD + MSQB 

MSTD 

MSGD 

MSGB 

MSGD 

MSQD 

MSE 

Error 120 

The ANOVA indicated the following significant factors at the 5% level: 

— In azimuth, 

• Tank-3 Gunners * Boresight-A Devices 

• Tank-3 Gunners * Boresights 

• Tanks * Boresight-A Devices 

— In elevation, 

• Tank-3 Gunners * Boresights 

• Tanks * Boresight-A Devices 

• Tanks * Boresight-B Devices 

• Boresights 

Beginning with the azimuth, these results will be discussed. Figure 2 shows the mean 
azimuth readings for Tank-3 Gunners using the two Boresight-A Devices. Gunner E readings on 
device Al were slightly to the left of readings on device A2. In the presence of no interaction, one 
would expect Gunner F to read about this same amount to the left using device Al.  However the 
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actual difference was noticeably larger and to the right. Therefore, the difference between the 
two boresight devices was dependent upon which gunner was taking the reading. This indicates 
that the two factors interact. Pictorially, the interaction is indicated by the non-paralletness of 
the two lines. 

Figure 2.  Interaction between Tank-3 Gunners and Boresight-A Devices, Azimuth. 

Gunner E — 

Gunner F — 
Device A2 Device Al 

0 
Mean Muzzle Pointing Angle, Azimuth 

The interaction between Tank-3 Gunners and Boresights (see Figure 3) is due to the fact that 
the mean in azimuth readings for Gunners E and F using Boresight A was at least as twice as 
large as the same difference using any other Boresight Type. 

Figure 3.  Interaction between Tank-3 Gunners and Boresights, Azimuth. 

Gunner E — 

Gunner F — 

Mean Muzzle Pointing Angle, Azimuth 

A very strong interaction was also noted between Tanks and Boresight A devices.   This may 
be seen by the the noticeable lack of parallelism of the three lines in Figure 4. 
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Figure 4. Interaction between Tanks and Boresight-A Devices, Azimuth. 

Device Al — 

Device A2 — 

Mean Muzzle Pointing Angle, Azimuth 

Each of these three interactions found in azimuth may be explained by a faulty collimation of 
one of the Boresight-A devices on the third day and/or the relative instability of Boresight A. 

In elevation, the ANOVA pointed out several significant effects listed previously. The first of 
these is a very strong interaction between Tank-3 Gunners and Boresights. This is seen in Figure 
5 which depicts the elevation readings for Gunners E and F with each of the five boresight types. 
The difference in each gunner's mean reading is boresight dependent, therefore the significant 
interaction. The main contributors to this interaction are Boresights A and E. This indication 
of instability in Boresight E is somewhat surprising, and is possibly the result of a faulty 
collimation. 

Figure 5.  Interaction between Tank-3 Gunners and Boresights, Elevation. 

Mean 
Muzzle 

Pointing 
Angle, 

Elevation 

0- 

Letter indicates 
Boresight Type 

Gunner E Gunner F 

Significant interactions between Tanks and Devices occurred for both Boresights A and B, as 
noted in Figures 6 and 7.   The reason for the interaction of Figure 6 may lie in the collimation 
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procedure. Boresight B is not required to be collimated on the same tank on which it may be 
later used (as are Boresights A and E). Furthermore, it does not require two readings taken from 
opposite sides of the tube to average any parallax error (as do Boresights C and D). Since 
different gun tubes wear differently, boresight devices will also sit differently in the barrel. 
Collimation is supposed to correct for parallax errors in tube and boresight device pairings. So if 
collimation is not performed, or if multiple readings are not taken, parallax errors may show up 
as an interaction between boresight and tank. 

Figure 6. Interaction between Tanks and Boresight-B Devices, Elevation. 

Mean 
Muzzle 

Pointing 
Angle, 

Elevation 

0- 

Device Bl Device B2 

The Tank and Boresight A interaction of Figure 7 is explained again by faulty collimation 
and/or instability of this boresight's optics. 

Figure 7.  Interaction between Tanks and Boresight-A Devices, Elevation. 

Mean 
Muzzle 

Pointing 
Angle, 

Elevation 

0- 

Device Al Device A2 
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Finally, a significant boresight effect was noted. Even in light of all the interactions noted 
previously, Boresight A tends to read significantly higher than all of the other boresight types. 
Figure 8 shows the average muzzle pointing angle read from each type of boresight. 

Figure 8.  Mean Muzzle Pointing Angle for Each Boresight, Elevation. 

Mean 
Muzzle 

Pointing 
Angle, 

Elevation 

BCD 
Boresight Type 

E 

III.  Test Plan and Analysis ~ Part II 

A second part of the overall test was designed to determine the error that is associated with 
the reading of the boresight. This was achieved by keeping the cannon and boresight stationary 
until a complete set of readings could be taken. The readings were taken in a different manner 
than they were in Part I. An additional test assistant stood downrange in front of a panel 
holding a small cross. The gunner directed this "crossbearer" via radio to move the cross until a 
designated corner of the cross was in line with the reticle crosshair (or dot). The crossbearer then 
lightly marked on the panel the position of that corner of the cross. This procedure was repeated 
until all five markings were made. Knowing the distance to the panel from the muzzle, the 
angular measurement of e::^ h reading was determined, and the dispersion of the five markings 
obtained. 

Part II was conducted in one day using a single tank. It required four test personnel and the 
same ten boresighting devices that were used in Part I. The design matrix for this part of the 
test is shown in Table 3. The selection of a gunner/device combination was conducted in a 
completely randomized fashion, however all readings for that combination were taken 
consecutively as noted above. 

Figure 9 displays the pooled dispersions in azimuth and elevation of each boresight type. 
This error associated with the reading of the boresight device makes up a very small part of the 
total boresight error that was measured in Part I of the test. In both azimuth and elevation, 
Boresight A had the highest dispersion of all types tested. The larger error associated with this 
boresight is primarily the result of thicker reticle lines, which made it difficult to find the center 
of the  marker cross.   This effect was particularly  noticeable when heat shimmer  partially 
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obscured the target cross. 

Table 3.  Test Matrix for Part II. 

Gunner 

Boresight 
A 

Boresight 
B 

Boresight 
C 

Boresight Boresight 
E 

Device 
Al 

Device 
A2 

Device 
Bl 

Device 
B2 

Device 
Cl 

Device 
C2 

Device 
Dl 

Device 
D2 

Device 
El 

Device 
E2 

1 

(x.y) 
(x, y) 
(x, y) 
(x, y) 
(x, y) 

(x, y) 
(x, y) 
(x.y 
(x,y) 
(x.y) 

(x,y) 
(x.y) 
(x, y) 
(x, y) 
(x, y) 

(x.y) 
x, y) 
x, y) 
(x.y) 
(x, y) 

(x.y) 
(x, y) 
(x.y) 
(x, y) 
(x.y) 

(x.y) 
x.y) 
x, y) 

(x, y) 
(x,y) 

(x,y) 
(x, y) 
(x.y) 
(x, y) 

_(* r) 

(x.y) 
(x.y) 
(x.y) 
(x,y) 
(x,y| 

(x, y) 
(x, y) 
(x.y) 
(x.y) 
|x. yl 

(x, y) 
(x, y) 
(x,y) 
(x, y) 
(\. v) 

2 same as above 

3 same as above 

4 same as above 

Figure 9.  Overall Dispersion of Muzzle Pointing 
Angle for Each Boresight Device, Part II. 
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Elevation 
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IV.  Conclusions and Recommendations 

» With the exception of Boresight A, all the other boresights were able to measure the same 
centerline of the muzzle of the cannon with good accuracy. Boresight A on the other hand, 
measured significantly different bore centerlines, particularly in elevation. 

• Boresight A interacted with Tank 3 gunners in both directions. This is further evidence of 
the instability of this boresight type. 

• For Boresights B and E there was some evidence of instability in elevation as these types of 
boresights interacted with Tanks and Tank-3 gunners, respectively. For these two boresight 
types, this is most likely the result of imperfect collimation. In the case of Boresight B, 
collimation was not authorized at the user level. Boresight E collimation was performed each 
morning, but improper or poorly performed collimation could lead to the noted interaction 
with Tank-3 gunners. 

• Taking two reading, with the boresight turned 180 degrees between readings, adequately 
corrects for collimation errors. This should eliminate the interactions noted above with 
Boresights B and E. 

. Boresights B, C, D and E did not differ in terms of repeatability. Boresight A as a whole had 
larger dispersions of its readings. 

. Boresight A should not be used until it is re-evaluated. It is possible that the two used in this 
test were poorly maintained or were unrepresentative of the design. Until repeatability 
problems are resolved and it is clear that Boresight A measures the same bore centerline as 
the boresights in field use, its use may contribute to significant accuracy errors. 
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ABSTRACT. The rank transformation procedure, where the data 
are replaced by ranks in an overall ranking of the data and then 
the usual parametric procedure is computed on the ranks, is 
reported in this paper to be a valid procedure in balanced 
incomplete block designs. Computer simulation is used to see how 
well the F distribution approximates the exact null distribution 
for this procedure and four competitor procedures under five 
different distributional assumptions. Also computer simulation is 
used to compare the power of this procedure with five competitor 
procedures under three different distributional assumptions. The 
rank transformation procedure is shown to be both robust and 
powerful as compared with these other procedures. 

1. INTRODUCTION. An example of a situation where a balanced 
incomplete block (BIB) design is appropriate is as follows. Various 
scents are compared, to see which are the most attractive to 
coyotes, in a predator-control study. Seven scents are evaluated, 
but a maximum of three scents can be compared at the same time, so 
a BIB design is appropriate. A 7x7(3,3,1) design is selected. The 
notation 7x7(3,3,1) refers to txb(k,r,X), where 

t -  the number of treatments (seven scents in this case) 
b = the number of blocks (repetitions, where each rep compares 

three scents) 
k = the number of treatments compared in each rep 
r = the number of times each scent is tested (Note kb = rt xn a 

BIB design.) 
k ~  the number of blocks where treatment i is compared with 

treatment j which is the same for all pairs of treatments in 
a BIB design. (Note A, =  r(k-l)/(t-l) in a BIB design.) 

The total time (in seconds) the coyote spends at each scent is 
the measure of attractiveness, and is the dependent variable. The 
experiment is real, but the numerical results are hypothetical, on 
the next page. 

The classical parametric test (see e.g., Cochran and Cox, 
1957), using the test proposed by Yates (1936) results in an F 
statistic of 1.87. This assumes normal populations, and additive 
block effects. Under the null hypothesis of no treatment effects 
this F statistic is compared with tables of the F distribution with 
6 and 8 degrees of freedom. The p-value associated with F = 1.87 is 
0.22, which indicates there is no significant difference in scents. 
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1 2 
SCENT 
1    4 5 6 7 

COYOTE 1 14 23 12 

2 17 2 3 

3 6 1 16 

4 0 10 42 

5 15 4 7 

6_ 67 5 18 

7 31 0 22 

A closer look at the data reveals a few very large 
observations, such as possibly the observations 31 and 42, and 
certainly the observation 67. This in combination with the many 
observations less than 10 suggests that the normality assumption 
may not be valid. Therefore a nonparametric test is called upon. 

The usual nonparametric test for BIB designs is the Durbin 
test, that analyzes the ranks of the observations within each block 
(coyote). The ranks of the observations are given as follows. 

SCENT 
12 3 4 5 6 7 

COYOTE  12 3 1 

2 2 13 

4 12 3 

5 3 12 

6 3 12 

7 3 1 2 

The Durbin test statistic (see Conover, 1980) is D = 12, which 
is the maximum possible value of the test statistic for this BIB 
design because of the perfectly consistent ordering of the scents. 
The Durbin test statistic is asymptotically chi-squared distributed 
with t - 1 - 6 degrees of freedom. The p-value, obtained from the 
chi-squared distribution, is 0.065, which is smaller than before 
but still not significant at the a = 0.05 level. 

42 



Because the rankings are perfectly consistent in the above BIB 
design, it is simple to compute the exact p-value of the Durbin 
Test statistic. The exact p-value associated with the most extreme 
value of D is given by 

t! 7 ! 
(ic! 3! 

= 0.018 

This illustrates the fact that the Durbin test actually shows 
significant differences to exist among the various scents, but that 
the chi-squared approximation is not very good in the tail of this 
distribution. 

An alternative procedure to the classical F test and the 
Durbin test is to use a rank transformation procedure (Conover and 
Iman, 1981). That is, all of the observations are ranked from 
smallest to largest, and the classical F test is performed on these 
overall ranks. The ranks of the observations, over all of the 
blocks simultaneously, are given as follows. 

COYOTE 1  12 

2 

18 

SCENT 
2   4 

11 

2 

3 

4 

15 4 

8 14 

1.5  10 20 

5  13 

6 21 

9 

7   16 

19 1.5 17 

The F statistic computed on these ranks is F„ = 5.19, which is 
compared with the F distribution with 6 and 8 degrees of freedom, 
as in the classical F test, to get a p-value of 0.02. Thus the rank 
transformation test and the Durbin test give similar results for 
this set of data, while the classical F test is plagued with 
outliers which hamper the power of that normal-theory-based test. 

This rank transformation test is not nonparametric. Is it even 
a valid test? What is known about the behavior and characteristics 
of this statistical procedure, both under the null hypothesis and 
under the alternative hypothesis? Specifically, the following 
questions need to be addressed in order to make an informed 
decision as to whether or not to use this rank transformation 
procedure in balanced incomplete block designs. 
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Question 1: Is the asymptotic distribution of FR really the F 
distribution with t-1 and bk-b-t+1 degrees of freedom under the 
null hypothesis? 

Question 2: How good is the F distribution as an approximation to 
the exact distribution? 

Question 3: How does the power of this rank transformation test 
compare with its most obvious competitors? 

Question 4: Can these results be extended to general scores other 
than ranks? 

Question 5: Can the theoretical asymptotic relative efficiency 
(ARE) be obtained for this rank transformation test? 

Question 6: Can some of these results be extended to the general 
linear model? 

The answers to these guestions have been obtained by the 
author as a result of research supported by the Army Research 
Office, and will be shown in detail in another paper. A summary of 
the results is given below. 

2. THE NULL DISTRIBUTION OF THE TEST STATISTIC. Although it is 
not shown in this paper, the null distribution of the test 
statistic F„ is asymptotically the same F distribution used in the 
classical analysis, namely the F distribution with t-1 degrees of 
freedom in the numerator and bk-b-t+1 degrees of freedom in the 
denominator, under some easily met conditions. Specifically these 
conditions, in addition to the null hypothesis of no treatment 
effects being true, are as follows. 

1. A "uniform mixing condition" holds. That is, the block effects 
are randomly mixed with the BIB design treatment pairings, so that 
some treatments don't consistently appear in blocks with higher (or 
lower) mean effects, which would introduce an artificial apparent 
treatment effect. 

2. The number of blocks, b, tends to infinity. 

3. The XAj are independent random variables, distributed according 
to the block distribution function Fi(x) which must be 
nondegenerate in all but a finite number of blocks, and the average 
block distribution function 

v*> * iSFi(x) 

converges uniformly to some function H(x) for all x as b approaches 
infinity. 

The next question that needs to be addressed is how well the 
F distribution serves as an approximation to the true distribution 
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of FR when the sample sizes are small. To answer this question, a 
simulation study was conducted to see what percentage of the time 
the null hypothesis was rejected when FR was used as a test 
statistic and compared with the approximate quantiles from the F 
distribution with t-1 and bk-b-t+1 degrees of freedom. Thirteen BIB 
designs were studied, ranging from ones with 12 observations to one 
with 99 observations. The number of repetitions was 2500 in each 
case. The block effects were additive, and the error terms were 
distributed according to five distributions. First the normal 
distribution was studied, then the lognormal, the laplace, the 
uniform, and finally the cauchy. 

At the same time, the percentage of rejections under the null 
hypothesis was computed for four other tests. These include the 
classical F test, the aligned ranks test ART where the observations 
are "aligned" by subracting the block means before an overall 
ranking and the F statistic is computed on the resulting ranks, the 
Durbin test Dl using the usual chi-squared distribution as an 
approximation, and a modification D2 of the Durbin test where the 
classical F test is conducted on the ranks within blocks. 

First the results of the normal distribution simulation are 
presented below in Table 1. It is easily seen that the F 
approximation in the rank transformation test is quite good even 
for small sample sizes. When the total number of observations n - 
tr = bk is quite small the empirical estimate of the true a is 
never larger than .058 nor less than .044, and usually quite close 
to the target value of .050. Of course the F test is exact, and the 
column of empirical Type I error rates given under F merely 
reflects the type of sampling variability one can expect in a 
simulation study of this size. The variability under the F test has 
the same magnitude as the variability under the RT test, suggesting 
that most of the variation observed under RT is due to sampling 
variability caused by the simulation. 

Table 1. Percentage of times the null hypothesis was rejected 
in 2500 simulations of a BIB design, with normal random 
variables. 

BIB Design statistical Test 
txb(k,r, X) ST F A£T Dl QZ 

1. 4x6(2,3,1) .052 .041 .062 .000 .000 
2. 4X4(3,3,2) .058 .049 .062 .000 .072 
3. 5X10(2,4,1) .057 .050 .062 .000 .115 
4. 5X5(4,4,3) .050 .053 .059 .025 .064 
5. 5X10(3,6,3) .056 .054 .057 .038 .060 
6. 6x10(3,5,2) .054 .047 .050 .028 .057 
7. 6x6(5,5,4) .054 .049 .056 .044 .058 
8. 7X7(3,3,1) .050 .045 .053 .000 .088 
9. 7X7(4,4,2) .049 .051 .050 .022 .048 

10. 7X7(6,6,5) .044 .039 .041 .032 .044 
11. 8x8(7,7,6) .050 .048 .049 .038 .053 
12. 9X9(8,8,7) .049 .054 .050 .050 .046 
13. 10x10(9,9,8) .050 .049 .050 .047 .045 
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The aligned ranks test, on the other hand, shows slightly more 
variation than either the RT or the F tests, with empirical a 
levels ranging from .041 to .062. 

The Durbin test with the chi-squared approximation appears to 
be very conservative, with no rejections reported in 4 of the 13 
designs. In design 8, the 7x7(3,3,1) design, it is mathematically 
impossible to obtain a result in the rejection region, as was 
pointed out in the introduction, where this same design was used as 
an illustration. Although we did not check this out, it appears 
that the same may be true of designs 1, 2, and 3. 

The Durbin test with the F approximation shows erratic 
behavior, with empirical Type I error rates as low as .000 and as 
high as .115. 

Although the F test always performs well for normally 
distributed random variables because it is derived for that case, 
it relies on its property of robustness for nonnormal 
distributions. When the underlying distribution has short to 
moderate tails, such as with the uniform and laplace distributions, 
the robustness and power of the F test are quite good. However when 
the underlying distribution has long tails, such as with the 
lognormal and cauchy distributions, then the F test becomes 
conservative, and the power suffers considerably. 

Table 2 shows how the actual level of significance varies with 
the distributions and with the type of test used. In addition to 
showing the lack of robustness of the F test for long tailed 
distributions, it shows that the rank transform RT test and the 
aligned ranks test ART are very stable over the wide range of 
distributional types studied here. It also shows that the chi- 
squared version of the Durbin test Dl is consistently conservative, 
and the F version of the Durbin test D2 is consistently liberal. 
Not shown in the table is the fact that D2 varies widely from 
design to design over all of the distributions, ranging from lows 
of 0.000 to highs of over 11%, underscoring the instability of the 
F approximation for the F statistic computed on the Durbin ranks. 

Table 2. Percentage of times the null hypothesis was rejected, 
averaged over the 13 BIB designs of Table 1, for random 
variables with various distribution functions. 

Distribution El I ART Dl 02 
Normal .0518 .0484 .0539 .0249 .0577 
Lognormal .0518 .0338 .0520 .0249 .0577 
Laplace .0529 .0440 .0554 .0264 .0612 
Uniform .0532 .0529 .0557 .0258 .0600 
Cauchy .0530     .0171     .0537     .0255     .0604 

Another way to look at the goodness of the F distribution as 
an approximation for small and moderate sample sizes, is with a 
Chi-squared Goodness-of-fit Test, as reported in Table 3. The 
entire F distribution (or chi-squared distibution in the case of 
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the Durbin Dl test) was divided into io intervals of equal 
probability, so the expected number of observations in each 
interval was 250. Then the observed number of observations in each 
interval, from the 2500 simulations, was compared with the expected 
number 250 in the usual manner for this goodness-of-fit test. 

The chi-squared statistics are given below for normally 
distributed error terms. Note that values that exceed 16.919, the 
.95 quantile of the chi-squared distribution with 9 degrees of 
freedom, are significant at the .05 level, and are denoted by *. 
Values that exceed 21.666 are significant at the .01 level and are 
denoted by **. From these results it is easily seen that the 
asymptotic approximations are unsatisfactory for both versions of 
the Durbin test, but are surprisingly good for both the rank 
transformation procedure RT and the aligned ranks test ART. 

Table 3. Values of the chi-squared goodness-of-fit statistic 
for comparing the F distribution (or chi-squared distribution 
in the case of Dl) to the actual output of 2500 simulations of 
normally distributed random variables, for 13 BIB designs. 

BIB Design Statistical Test 
txb(k,r, X) RT     £ A£T ßl    D_2_ 

1. 4x6(2,3,1) 15.1 10.0 25.6** 6160** 6160** 
2. 4X4(3,3,2) 17.6*   7.4 16.7 1505** 1482** 
3. 5x10(2,4,1) 19.2* 12.0 35.5** 2929** 2929** 
4. 5x5(4,4,3) 25.1** 19.8* 27.1** 263** 92.1** 
5. 5X10(3,6,3) 13.0 12.4 10.2 328**  149** 
6. 6X10(3,5,2)        4.9    8.2 14.0 132**  194** 
7. 6X6(5,5,4) 5.9    9.1 2.6 234** 21.2* 
8. 7x7(3,3,1) 6.8    7.2 12.4 384**  403** 
9. 7x7(4,4,2) H.3 14.8 8.4 187** 12.3 

10. 7x7(6,6,5) 19.3* 6.4 19.2* 42.8** 23.2** 
11. 8x8(7,7,6)         8.5 8.6   6.2 16.6    9.1 
12. 9x9(8,8,7)         7.6 16.7   3.5 197    8.8 
13. 10x10(9,9,8)       9.9 7.9   5.4 145    6.8 

Simple averages of the chi-squared goodness-of-fit test 
statistics over the 13 BIB designs for the normal distribution, 
given above, and in addition for lognormal, laplace, uniform, and 
cauchy distributions averaged over the same 13 designs, are given 
in Table 4. 

Table 4. Chi-squared goodness-of-f it statistics, averaged over 
the 13 BIB designs of Table 3, for random variables with 
various distribution functions. 

BIB Design Statis ftical Test 
txb(k,r, k) RT. £ ART 01 D2 

Normal (above) 12.6 10.8 14.4 963.3 883.8 
Lognormal 12.6 119.4 13.1 963.4 883.9 
Laplace 10.9 13.4 15.5 914.3 839.3 
Uniform 11.2 8.8 14.9 954.7 864.9 
Cauchy 10.3 719.6 14.1 961.5 860.1 
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In summary, the F distribution provides a good approximation 
to the null distribution of the rank transformation statistic RT in 
all of the cases studied. Also the a  level is reasonably accurate. 

For the parametric F test, the F approximation is good with 
the normal distribution, for which it is derived, but also for the 
laplace and uniform distributions, showing the robust nature of the 
F test with short tailed distributions. With long tailed 
distributions such as the lognormal and cauchy, the F test is not 
robust, and the a  levels are quite conservative. 

The aligned ranks test ART behaves in a satisfactory manner 
for all five of the distributions studied. The fit to the F 
approximation is uniformly good, but not as good as the rank 
transformation test. Also the a levels are close to the target 
value .05 but again not as close as the rank transformation test. 

Both versions of the Durbin test, Dl which uses the chi- 
squared distribution as the approximation and D2 which uses the F 
distribution as the approximation, clearly are unsatisfactory both 
with regard to the asymptotic approximations and with regard to the 
a levels. The Dl test is very conservative, while the a level of 
the D2 test has erratic behavior depending on the choice of BIB 
design. 

3. THE POWER OF THE RANK TRANSFORMATION TEST. The power of the 
rank transformation test RT was compared with its most obvious 
competitors F, ART, Dl, D2, and the version D3 of the Durbin test 
that uses the exact distribution of the Durbin test statistic (Van 
der Laan and Prakken, 1972). This latter test was included because 
the poor approximations available for both Dl and D2 made a study 
of the power of those tests highly unreliable. 

Only the BIB designs #6 and #11 were selected for the power 
study. BIB design #6 has only 30 observations, but is one in which 
both the RT and the ART have a levels close to .05. BIB design #11 
has 56 observations, which is closer to the large-sample case than 
#6, and also has well-behaved o levels for the RT and the ART 
tests. The only distributions studied were the normal distribution, 
to see how these methods compared with the F test which is optimal 
for this case, the lognormal distribution as a representative of 
long-tailed distributions, and the laplace distribution as a 
representative of a non-normal short-tailed distribution. The 
percentage of rejections out of 2500 replications was recorded, 
both for small treatment effects and for large treatment effects. 
The results appear in Table 5. 

The power simulation results in Table 5 show that the rank 
transformation test has almost the same power as the F test when 
the distributions are normal, slightly more power than the F test 
when the distributions are laplace, and considerably more power 
than the F test when the distributions are lognormal. The aligned 
ranks test ART also has almost as much power as the F test when the 
distributions are normal, and more power than the F test when the 

48 



distributions are laplace or lognormal, but not as much power as 
the rank transformation test in these latter situations. The exact 
D'urbin test D3 suffers uniformly from a lack of power as compared 
with the rank transformation test, and in most cases has even less 
power than the aligned ranks test ART. The chi-squared 
approximation version of the Durbin test Dl has even lower power, 
due to the extreme conservative nature of the test. The F 
approximation version of the Durbin test D2 sometimes shows 
favorable power, but this is due to artificially high actual a 
levels in those cases. 

In summary, the robust rank transformation procedure appears 
to have more power overall than any of its competitors, parametric 
or nonparametric. 

Table 5. Power (percentage of rejections) for five tests, two 
BIB designs, three distributions, and small or large treatment 
effects, as estimated from 2500 simulations in each case. 

SMALL TREATMENT EFI ̂ECTS 
Distribution 

BIB Design El E ART 01 Dl D2_ 

Normal 
#6. .162 .160 .158 .119 .079 .150 

#11 .290 .298 .292 .219 .079 .150 

Lognormal 
#6 .162 .021 .137 .109 .079 . 150 

#11 .284 .058 .226 .225 .219 .266 

Laplace 
#6 .116 .103 .119 .089 .059 .123 

#11 .228 .165 .201 .146 .160 .208 

LARGE TREATMENT EFFECTS 
Distribution 

BIB Design RT £ ART D3 Dl D2_ 

Normal 
#6 .526 .536 .544 .365 .266 .429 

#11 .916 .922 .915 .840 .266 .429 

Lognormal 
#6 .529 .095 .405 .372 .266 .429 

#11 .894 .287 .792 .845 .840 .868 

Laplace 
#6 .372 .302 .344 .248 .179 .307 

#11 .748 .624 .714 .635 .626 .683 

The theoretical asymptotic relative efficiency (ARE) for the 
BIB designs has been shown by the author to *oll°wi,

th?1 "«J* *J? 
formulas as the ones presented by Hora and Iman (1988) tor 
randomized complete block (RCB) designs. The sufficient conditions 
include the same conditions presented in Section 2 for tne 
asymptotic F distribution under the null hypothesis Pl£ «« £»• 
general conditions used by Hora and Iman (1988) m their paper. 
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They are not repeated here. 

The specific ARE results are a function of several factors. 

1. The underlying population distribution. 
2. The size of the block effects. 
3. The number of treatments. 

The reader is invited to see the paper by Hora and Iman (1988) for 
excellent graphs and discussion. Those same graphs and discussions 
apply to the BIB designs with the same number of treatments as in 
the RCB designs. The number of blocks, of course, goes to infinity 
as a condition for the asymptotic nature of the calculations. Their 
ARE results parallel the power study results presented in Table 5 
of this paper 

4. SUMMARY AND ADDITIONAL COMMENTS. The rank transformation 
test is a valid, powerful alternative to existing parametric and 
nonparametric tests for analyzing balanced incomplete block 
designs. 

Although the discussion in this paper concentrated on 
replacing the observations by their ranks in an overall ranking, 
scores based on ranks can be used in the analysis as well, for 
scores al3 given by the usual eguations 

and 

a„ = E[q>(u£lj))] 

where Ubk
(R13) is the Rn th order statistic from a uniform (0,1) 

sample of size bk. Sufficient conditions for the asymptotic results 
to hold the same as for ranks are for <p(u) to be non-constant over 
its range (0,1), and for the first derivative <p'(u) to be 
absolutely continuous and bounded on (0,1). This latter condition 
can be relaxed enough to include normal scores. 

At this time no general extensions of these results to general 
linear models appear to exist. Some special cases of the rank 
transformation are known not to work, such as the test for 
interaction in a two-way layout with both treatment effects being 
present. See Thompson (1991) or Blair, et al. (1987) for a 
discussion of this limitation. 
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THE APPLICATION OF META-AMALYSIS TO ARMY ISSUES 

Carl B. Bates and Franklin E. Womack 
U.S. An*y Concepts Analysis Agency 

Bethesda, Maryland 20184-2797 

ABSTRACT. The Army has been studying the employment of scout helicopters as 
members of attack helicopter teams for over 25 years. The mission of the 
scout helicopter 1s to acquire and identify targets and to hand off targets 
to and coordinate movement of the attack helicopters on the team. It is 
hypothesized that the effectiveness of the team is increased by the inclusion 
of scout hellcopter(s) on the team. Very few experiments have been designed 
to test this hypothesis directly. However, it was felt that much data must 
have been generated on this subject as parts of other field and computer 
simulated experiments. The Math Stat Team at the U.S. Army Concepts Analysis 
Agency collected data from many of these previous experments and undertook to 
apply meta-analysis techniques to extract Information on scout helicopter 
contribution. This paper discusses the approach taken to the scout 
helicopter question and touches on possible problems in applying meta- 
analysis to similar Army issues. 

1. PROBLEM. The problem is to apply and assess the application of meta- 
analysis to scout helicopter effectiveness data. 

2. BACKGROUND. A review article on meta-analysis by Mann in the August 1990 
issue of Science stimulated thinking at the US Army Concepts Analysis Agency 
(CAA). It was conjectured that meta-analysis may have applicability to land 
combat issues. The Director, CAA, directed that an 1n-house assessment be 
made of the applicability of meta-analysis to Army issues. The scout 
helicopter effectiveness issue was selected because it has been the subject 
of extensive study during the last three decades. Therefore, a suitably 
large body of documented work would exist to test meta-analytic techniques. 

3. SCOPE. The scope of the analysis was limited to data in reports on 
studies conducted since 1960 on the scout helicopter effectiveness. 

4. ASSUMPTIONS 

a. All important studies involving scout helicopter effectiveness have 
been submitted to the Defense Technical Information Center (DTIC). 

b. A common hypothesis can be extracted from the studies. 

c. Some studies will contain data that can be employed in the meta- 
analysis. 

5. METHODOLOGY. A schematic of the methodology employed is shown in Figure 
1. A literature search was conducted of DTIC documents and the catalog of US 
Army Combat Developments Experimentation Command (USACDEC) experimentation, 
A bibliography was then prepared of scout helicopter reports that would be 
searched for data. Concurrent with the development of the scout helicopter 
bibliography, meta-analysis literature was researched and studied. The 
bibliography was studied and a common hypothesis was developed. Appropriate 
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data were then extracted where available from the scout reports. Meta- 
analytic methods which would be employed were selected. The selected methods 
were then applied to the extracted data, and an assessment was made of the 
application. 

Purpose- 
to assess 
applicability of 
meta-analysis 
to Army issues 

Acquire and 
research 
meta-analysis 
literature 

Determine 
meta-analysis 
methods 

Determine how 
to calculate 
effect si2e and 
test homogeneity 

Apply meta- 
analysis to 
selected 
studies 

Document 
analysis and 
prepare tech- 
nical paper 

Acquire and 
review Scout 
helicopter 
reports 

Determine 
meta-analysis 
hypothesis 

Extract data 
from selected 
Scout 
reports 

Figure 1. Methodology 

6. ESSENTIAL ELEMENTS OF ANALYSIS 

a. What common hypothesis can be developed from the collective helicopter 
studies? The null hypothesis is—the scout helicopter did not enhance 
effectiveness; the alternative hypothesis is—the scout helicopter did 
enhance effectiveness. 

b. What are the underlying assumptions for valid application of meta- 
analysis? 

(1) Similarity of experiments 

(2) Independence of experiments 

(3) Common unit of measurement 
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(4) Absence of covariates affecting experiments 

(5) Homogeneity of effect size, a measure of association between 
treatment and response 

(6) Individual experiments are summarized and analyzed in a common 
manner 

(7) All relevant experiments are included 

c. What are the «ajor criticisms of «eta-analysis? Meta-analysis is 
controversial. The proponent school appears to be those in the social 
sciences and the medical field who are searching for ways to improve the 
review and synthesis of research analysis from separate studies. The 
opponents appear to be statisticians critical of the statistical methods 
employed. The misapplication of methods invalidates the statistical 
analyses. The major criticisms of meta-analysis are: 

(1) Logical conclusions cannot be drawn by comparing and aggregating 
dissimilar studies that Include different measuring techniques, definitions 
of variables (e.g., treatments, outcomes), and subjects. 

(2) Results of meta-analyses are unlnterpretable because results from 
"poorly" designed studies are included along with results from "good" 
studies. 

(3) Published research is biased in favor of significant findings 
because nonsignificant findings are rarely published; this, in turn, leads to 
biased meta-analysis results. 

(4) Multiple results from the same study are often used which may bias 
or invalidate the meta-analysis and make the results appear more reliable 
than they really are, since these results are not independent. 

d. What is the assessment of the application of meta-analytic techniques 
to scout helicopter effectiveness? 

(1) Scout helicopter studies are written for a specific purpose. Many 
study reports do not contain data needed to perform a meta-analysis. Each 
study addresses a different question and involves different postures, 
environments, scenarios, and modes of operation. Outcome measures employed 
in the studies vary. Data sets are not independent. 

(2) Meta-analytic methods are not applicable for confirmatory analysis 
of data from studies of land combat Issues that exhibit the characteristics 
of the scout helicopter data. However, meta-analytic techniques are 
applicable for exploratory data analysis (EDA) purposes. 

7. META-ANALYTIC METHODS. Meta-analytic methods were developed to satisfy a 
need for combining test results from Independent tests 1n which the same null 
hypothesis was tested. The tests were designed and conducted for the P^pose 
of testing the same null hypothesis. Methods discussed by Hedges and 01 kin 
(1985) are mostly applicable for measurement data. Rosenthal (1984) and woir 
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(1986) each present a multiplicity of meta-analytic procedures. The major 
ones are: 

a. Vote-counting. A common method of combining research results is the 
so-called "vote-counting" method. Study results are classified into three 
mutually exclusive categories. The relationship between the independent and 
dependent variable is either significantly positive, significantly negative, 
or there is no significant relationship in either direction. Hedges and 
Olkln (1980) show that the method may tend to make the wrong decision more 
often as the amount of evidence increases. If the average power of the 
statistical tests is smaller than the cutoff criterion, the probability that 
the vote count makes the correct decision tends to zero as the number of 
studies increases. Moreover, tallies of statistical significance or 
nonsigniflcance tell little about the strength or importance of a 
relationship, Glass (1977). Consequently, the vote-counting method is not 
recommended. 

b. Combining Contingency Tables. Another method for synthesizing study 
results that might appear natural 1s pooling the raw data. Suppose Study A 
(Table 1) gave the following categorization of subjects, Glass (1977). 

Table 1. Study A 

Treatment Control 

Improved 50 30 80 

Not improved 60 40 100 

110 70 180 

The improvement rate of the Treatment (50/110) over the Control (30/70) is 
0.45 versus 0.43. Study B gave the following results (Table 2). Here the 
improvement rate of the Treatment (60/90) is 0.67 versus 0.64 for the Control 
(90/140). 

Table 2. Study B 

Treatment Control 

Improved 60 90 150 

Not improved 30 50 80 

90 140 230 
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Pooling the two studies gives Table 3. Now the improvement rate for the 
Treatment (110/200) is 0.55, and the improvement rate for the Control 
(120/210) is 0.57. 

Table 3. Studies A and 8 

Treatment Control 

Improved 110 120 230 

Not improved 90 90 180 

200 210 410 

Each study showed the Treatment was better than the Control, but the 
aggregate of the two studies showed the Treatment to be worse than the 
Control. This so-called Simpson's paradox illustrates why raw data should 
not be pooled. Rosenthal (1984) gives more dramatic examples of Simpson's 
paradox. The problem has nothing to do with statistical inference. The 
problem lies in the unbalanced experimental designs. 

c. Fisher's Test. As stated above, many procedures have been proposed 
for combining probabilities. Virtually any test statistic may be used, 
converted to p-values, and employed to perform a meta-analysis. A popular 
procedure was proposed by Fisher (1932), Given k independent tests or 
studies which were designed to test the same hypothesis, determine the 
p-value from each of the k tests. If the test statistic is from a continuous 
distribution, the p-values are uniformly distributed. Then, 

k 

-2^ Inp^ X2(2k). 
t = l 

x2(2k) provides an overall omnibus test of the common null hypothesis against 
the common alternative test. If x2(2k) > x2(2k,l-a), reject the null 
hypothesis at the a-level of significance; otherwise, do not reject the null 
hypothesis. Mosteller and Bush (1954) found that in situations in which most 
studies showed results 1n one direction with p-values close to 0.5, the test 
would give overly conservative results. However, Fisher's test has been 
shown to be more asymptotically optimal than other combined tests. 

d. Wallis* Test. A statistical test used on the single experiment in 
this paper is Fisher's exact test. The test statistic for this test has a 
hypergeometric distribution. This is a discrete distribution. Discrete test 
statistics do not yield p-values with a uniform distribution. Therefore, 
Fisher's combined method is inappropriate. If Fisher's method is used it 
leads to underestimates of significance. 

The exact test to evaluate the p-value from combined p-values derived from 
independent single experiments having discrete test statistics is Wains 
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test (1942). The combined p-value is the probability of realizing a product 
of p-values as small as or smaller than the product of the p-values taken 
over all of the single experiments. One first develops the multivariate 
discrete distribution of the test statistics. Associated with each sample 
point is a product of p-values. A probability mapping is made from the 
multivariate sample space of test statistics to the univariate sample space 
of possible products of p-values. From this transformed space the p-value 
for the combined experiments is determined by cumulating the probability in 
this univariate space for values of products less than or equal to the 
product of p-values for the test statistics observed in each of the single 
experiments. Computations for all but the simplest cases render this method 
impractical to implement. 

e. Lancaster's Approximation. Lancaster (1949) developed a modification 
to Fisher's combined test. Two sets of probabilities for each single 
experiment are evaluated. The first probability is the usual p-value. A 
second probability expressing the probability of observing a test statistic 
more extreme than the observed value is also determined for each single 
experiment. A so-called mean value chi-square statistic is determined from 
the mean of the inverse distribution function. The sum of these derived chi- 
square statistics over all of the individual experiments is approximately 
chi-square distributed. However, the approximation tends to overestimate 
significance in some instances. 

f. Sethuraman's Sequential Test. Sethuraman's sequential test (1991) is 
a three-step test based on Fisher's combined test. A significance level is 
chosen (I.e., say 0.05). The first step is to apply Fisher's combined test. 
Reject the null hypothesis if the resulting p-value is 0.05 or less. If the 
p-value at the first step is greater than 0.05, proceed with the second step. 
Step two consists of adjusting the treatment successes 1n the contingency 
table for each single experiment by adding one. The other cells are adjusted 
so that the marginal totals remain the same as in step one. Fisher's 
combined test is applied again. If the p-value at step two is greater than 
0.05, there is not sufficient information to reject the null hypothesis and 
the test concludes at step two. If the p-value at step two 1s less than 
0.05, testing continues to step three. At step three, a uniform random 
number (0, 1) is selected for each single experiment. A weighted p-value is 
determined for each single experiment by multiplying the p-value obtained for 
the original contingency table by the random number selected for the 
experiment and multiplying the p-value obtained in the adjusted table of step 
two by one minus the same random number. Fisher's combined test is applied 
to this set of weighted p-values. The null hypothesis is rejected if the 
combined p-value is less than 0.05. Otherwise, there is not sufficient 
information to reject the null hypothesis. 

g. Mantel-Haenszel-Peto (MHP) Method. Mantel and Haenszel (1959) 
developed a method for combining rates from clinical trials. Richard Peto, 
Oxford University, modified the procedure. The MHP method appears to be the 
most popular meta-analytic technique used for synthesizing clinical trial 
study results. The conventional layout for clinical trials is a 2x2 
contingency table as shown in Table 4, where a, b, c, and d are the 
frequencies of the four mutually exclusive outcomes. 
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Table 4. C11 

Treatment 

nlcal Trial 

Control 

Improved a b a + b 

Not Improved c d c + d 

a + c b + d N -■ ■■  a + b + c + d 

The odds ratio (also called the cross-product ratio) is the ratio of the odds 
associated with the Treatment to the odds associated with the Control. The 
odds ratio Is simply ad/bc. The observed number (O) Improved after receiving 
the Treatment is a. The expected number (E)  is Ca + c/a + W/N. Under the null 
hypothesis of no Treatment effect, O-E should vary about zero with variance 
V =£[(N-(a+c))/N]((N-(a+b))/(N-l)]. Under the null hypothesis of no 
Treatment effect, the statistic 

I <°, " Ef< 1 vt 
j=i i=l 

is approximately chi-squared distributed with 1 degree of freedom, and k is 
the number of independent clinical trials. If the Treatment is beneficial, 
O-E tends to be positive; if there is no difference, O-E  1s zero. Yusuf et 
al. (1985) and Berlin et al. (1989) discuss the test. 

h. Der Slnonlan-Laird-Cochran Method (DLC). The DLC (1986) is another 
method for combining data from similar single experiment contingency tables. 
Like coin tossing experiments, 1t is assumed that a proportion of favorable 
events exists for the treatment and the control groups. The interest lies in 
the proportional difference between the two groups. In addition, the DLC 
attempts to measure an among experiment variation component much as the 
random effects ANOVA model. Weights for each experiment are determined by 
the inverses of a combination of within and among experiment variation. 

1. Logistic Regression. Logistic regression is a generalization of the 
MHP method. In addition to a primary predictor variable (i.e., Scout or No 
Scout) used in MHP and OLC, logistic regression allows one to include other 
predictor variables. Usually these other variables would be other covariates 
which are not otherwise controlled for or differ from single experiment to 
single experiment. Logistic regression is based upon the binomial 
distribution as opposed to regression which 1s usually based on the normal 
distribution. Being able to include covariates in the analysis helps in two 
ways. First, if there are any important covariates which are uncontrolled 
for, they would contribute to the heterogeneity of combined experiments and 
lead to an inflated variance. Logistic regression would help by adjusting 
for this systematic variation and give a more precise measure of the random 
variation. Second, it allows one to measure the effect of significant 
interactions between the primary predictor variable and the other covariates. 
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8. DATA BASE. One hundred twenty-eight scout helicopter reports were 
acquired and reviewed. Twelve reports contained data which might be 
extracted to use 1n the meta-analysis. One hundred thirty-nine separate 
experiments provided count data which could be assembled into 2x2 contingency 
tables similar to that Illustrated in Table 4. These 12 reports contained 
data representing seven different groups of measures of effectiveness and 
came from five different testing environments. The 139 experiments are 
cross-tabulated in Table 5 by measure of effectiveness block, study report 
number (I.e., a number from 01 to 128 representing the order of a report's 
acquisition), and testing environment (i.e., operational testing or one of 
four different simulation models). 

Note: A two-letter acronym is used for each of the seven measures of effec- 
tiveness as follows: (1) BK - kills by all Blue weapons engaged; (2) BS - 
survlvabillty of all Blue weapons; (3) HK - kills by Blue helicopters; (4) HS 
- survlvabillty of Blue helicopters; (5) OD - detection; (6) EE - engagement, 
and (7) SE - subjective evaluations. 

Table 5. Cross-tabulation of Experiments by Group, Study, and Model 

\Report 

Block \ 

Operational testing Model CARMONETTE 
Other 
models 

Block 
total 

01 07 16 27 28 14 20 31 33 49 57 AVBATS 

17 
AVWAA 

20 
JANUS 

49 

BK 3 S 8 3 6 1 26 

BS 3 5 8 3 6 1 26 

HK 1 2 1 5 8 3 6 1 3 30 

HS 2 3 4 8 3 6 2 1 3 32 

OD 1 12 1 1 1 1 17 

EE 5 1 6 

SE 2 2 

Report 
total 

1 12 4 10 2 1 9 19 32 12 24 5 2 6 139 
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9. ANALYSIS. One parameter of interest is the proportional difference 
between the treatment and the control. If the scout enhanced effectiveness, 
a measure of this for each experiment would be the difference between the 
proportion of the trials showing improvement when the scout was employed in 
the experiment versus the proportion of the trials showing improvement when 
the scout was not employed. This difference can be calculated for each 
experiment where the counts are tabulated like the format presented in Table 
4. This difference is a/(a + c) - b/(b + d). The null hypothesis is that 
scout does not enhance effectiveness. If this is true, we would expect the 
proportional difference to be around zero in case the scout is equally as 
effective as without the scout or a negative difference in case the without 
scout case 1s more effective than with scout. On the other hand, if the 
scout enhances effectiveness, we would like to reject the null hypothesis in 
favor of the alternative hypothesis which states that scout employment 
enhances effectiveness. In this case, the proportional difference should be 
significantly positive. When we accumulate the proportional differences from 
a number of separate experiments, we would expect that there would be only a 
small amount of variability 1n these values solely due to random variation. 
Figure 2 is a histogram of the proportional differences between the scout 
(treatment) and no scout (control) for each of the 139 experiments considered 
1n this study. 

a. Two points relevant to any meta-analysls of the data can be seen in 
this histogram. First, the data points are very disperse. In fact, the 
range is 135 percentage points out of the possible spread of 200 points 
(i.e., from -100 percent to +100 percent). Any estimate of the true 
parameter, proportional difference of effectiveness between scout and no 
scout is not very precise. Secondly, a rough estimate of the true parameter 
is the median of the histogram. The median proportional difference between 
scout and no scout for the 139 experiments is zero. This is consistent with 
the null hypothesis of no difference 1n the effectiveness of with scout 
helicopters and the effectiveness without scout helicopters. There are 
several notable outlier experiments. In the spirit of exploratory 
statistics, it would be interesting to explore why the results of these 
experiments were so much different than the majority of the other 
experiments. 

b. Our study looked at more sophisticated methods of meta-analysis 
including (1) Fisher's exact test and several variants (i.e., Wallis' test, 
Lancaster's approximation, and Sethuraman's sequential test), (2) Mantel- 
Haenszel-Peto method, (3) DerSimonian-Laird-Cochran method, and (4) logistic 
regression. It is invalid to apply the methods of meta-analysis to this data 
base without ignoring one or more of the assumptions made for a valid 
application. Moreover, when one ignores these assumptions and applies the 
more sophisticated methods of meta-analysis as we did in our study, no more 
relevant facts are elicited than are discernible from Figure 2. 
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Figure 2. Histogram of Percent Difference - All Experiments 
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10. FINDINGS 

a. Each study addressed a different problem. The purpose, scope, 
objective, and control conditions varied across studies. 

b. Potentially useful studies could not be included in the analysis 
because pertinent data were not preserved in the study documentation. 

c. Meta-analytic techniques are not appropriate for the analysis of 
specific Army data which are heterogeneous as are the scout helicopter data. 
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Total Time on Test Function Orthogonal Components and Tests of Exponentiality 

W. D. Kaigh and Alexander K. White 

ABSTRACT  . 

Mathematical development reminiscent of Fourier analysis applied to the sample total time on 

test function (TIT) yields scale-free orthogonal components analogous to empirical quantile 

function (EQF) component L-statistics utilized by Kaigh (1992a) for assessing one-sample 

uniformity. As estimators of TTT Fourier coefficients with respect to the complete orthonormal set 

of Legendre polynomials, the TTT components are linear combinations of normalized spacings 

with Hahn polynomial vector weight functions to provide directional criteria for assessment of 

departures from exponentiality. In particular, the first TTT component is equivalent to the 

cumulative total time on test statistic and Gini statistic investigated by Gail and Gastwirth (1978a). 

Analogous to the quadratic smooth tests for exponentiality proposed by Rayner and Best 

(1986,1989), aggregates of TTT component squares yield component decompositions of the 

squared coefficient of variation and a discrete Anderson-Darling type statistic. A simple average of 

the discrete and conventional Anderson-Darling statistics produces a hybrid exponentiality criterion 

which exhibits strong performance against various alternatives. 

Monte Carlo results indicate adequacy of asymptotics for small samples and empirical power 

comparisons show that TTT component exponentiality criteria are quite competitive for various 

alternative models, including those with "bathtub" hazard rates. 

Use of the TTT components and omnibus statistics is illustrated by application to real data. A 
smoothed continuous TTT plot and simple four-number summary are developed for description 
and presentation purposes. 

Keywords: Goodness of fit, L-moment, O-statistic, Quantile, Spacing, Uniformity. 
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1. INTRODUCTION AND PRELIMINARIES 

Among the many tests available for the composite exponential null hypothesis, several utilize 

normalized sample spacings and the sample total time on test function (TTT). Most of the these, 

however, employ relatively simple summary measures with perhaps some loss of TTT 

information. Reminiscent of Fourier analytic methods, more detailed TTT orthogonal component 

criteria proposed here are based on empirical quantile function (EQF) techniques developed in 

Kaigh (1992a,b) for the one-sample uniformity and nonparametric two-sample problems. The 

new omnibus and directional scale-free TTT tests for exponentiality emerge naturally from EQF 

application of the general approach established primarily for the empirical distribution function 

(EDF) by Durbin and Knott (1972). The EQF direction pursued here with TTT is opposite that of 

Rayner and Best (1986,1989) who focus on the EDF to obtain different orthogonal components 

and aggregate smooth tests for exponentiality. 

With preliminary discussion complete, the remainder of the paper is organized as follows. To 

provide conceptual insight and establish notation, certain TTT functionals are developed initially. 

These functionals then lead naturally to the Gini statistic, the squared coefficient of variation, and a 

new EQF Anderson-Darling type TTT quadratic statistic. In Section 2 individual TTT components 

are described and orthogonal component decompositions are developed. Monte Carlo power 

comparisons are presented and discussed in Section 3. An actual data analysis illustration in 

Section 4 employs significance testing and introduces general numerical and graphical TTT 

descriptive methods. Brief concluding remarks are presented in Section 5. 

1.1 TTT Functionals 

The main problem under consideration here is the hypothesis that a continuous life distribution 

with cdf F and qf Q is exponentially distributed with cdf F0(x)=l-e_x/ß, x>0, and quantile 

function (qf) Qo(u)=-ßlog(l-u), 0<u<l, for unspecified mean ß > 0. The proposed new 

exponentiality test criteria, as well as many conventional procedures, employ the total time on test 

concept. Although not explicitly stated in the following informal treatment of TTT functionals 

designed to motivate test statistic analogues, necessary differentiability and integrability conditions 

are assumed to be satisfied whenever appropriate. 

Corresponding to the cdf F and qf Q with assumed finite mean \i, pdf f, qdf q, and hazard rate 
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X,, important total time on test functional are defined on [0,1] by 

H-1(t) = io<x£Q(t) [I-F0O] dx total time on test transform 

= I(Ku<t (l-u)q(u) du 

H-1(t)/H~l(l) = (l/u.) Jo^xsQd) [l-F(x)] dx scaled total time on test transform 

= (lAOloWl-u)q(u)du 

VF = (1/JJ.) Jo<t<i H_1 (t) dt cumulative total time on test 

= I" O/H) /osusi uO-u)q(") du . 

Omitting the usual population Lorenz curve definition of the Gini index GF, we merely note that 

GF=1-VF. 

General background on the total time on test concept and other related functionals appears in 

Barlow (1979), Chandra and Singpurwalla (1981), and Shorack and Wellner (1986). In 

particular, H'1 is concave (convex) if the hazard rate is increasing (decreasing), and the scaled total 

time on test transform is the identity function for an exponential distribution. 

Treatment here will primarily address the TTT derivative (d/dt) H_1(0 = (l-t)q(t)= 1/MQ0)] 

and its scale-free counterpart Consider orthogonal representation with respect to the complete 

orthonormal set of Legendre polynomials {nk}k>o on ^ unit i"101"^- ^e Fourier series 

representing the TTT derivative is 

(d/dt) H~Ht) ~\i + Ilsk<» [Jo<u<i nk(u) (l-u)q(u) du] nk(t) . (1) 

The Legendre polynomials then provide integral Fourier coefficient functionals which 

characterize the TTT. For exponential distributions with linear TTT, all k>l Fourier coefficients 

vanish as a consequence of orthogonality and the fact that n0 is identically one. Hence, the scaled 

Fourier coefficients (lM)J0<u<irTk(u)(l-u)q(u)du are easily interpreted measures of departure from 

the composite null assumption of exponentiality. For example, U\ (u)=V3(2u-l) provides 

dM)Wini(u)(l-u)q(u)du = -Vl2(VF-l/2) = ^12(GF-l/2) with null value zero. 

Suggested by the Parseval identity, the TTT derivative scale-free squared norm with value zero 
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for all exponential distributions is given by 

JOSKI [U/H) (d/dt) H-HO-l]2 dt * Ii<k<„ [(l/H)/o<u<ink(u) (l-u)q(u) du? . (2) 

Integration by parts calculations utilizing the Legendre polynomial differential equation 

(d/du)[u(l-u)]n's(u)]+s(s+l)ns(u)=0 show that the associated Ferrer functions defined by 

ns
1(u)=[l/s(s+l)]1/2[u(l-u)]1/2ri's(u) are also orthonormal to yield associated inner products 

Ltsi td/^) H_1W " «I [tCl-t)]"1 ns
J(t) dt = (IAD/OSUSI n,(u) (l-uXl(u) du . (3) 

The related functional of primary importance later accumulates weighted TTT deviations from the 

identity function as 

J(Xt<i [(1/H) H-HtHP [t(l-t)]"i dt= I1<s<„[l/s(s+l)][(l/^)J0<u<1 ns(u) (l-u)q(u) du]2.    (4) 

1.2. TTT Exponentiality. Test Criteria 

Various TTT test statistics for the exponential composite null hypothesis are introduced now as 

sample analogues of the previously defined functionals. Suppose that a random sample Xlt.. .,Xn 

with continuous cdf F produces corresponding order statistics 0=X0:n<X1 .„< -..<Xn.n and 

normalized sample spacings (n-j+l)(Xj:n-Xj.1:n), l<j<n. As assumed throughout, it is important 

for subsequent development that zero be a natural minimum of the support of F. 

Observing that normalized spacings preserve the total I1:gj<n(n-j+l)(Xj:n-Xj.1:n)=21<i<nXi, 

form the nondecreasing sample (scaled) TTT by calculating cumulative partial sums 

Si:n=i:,SiSj(n-i+l)(Xi:irXi.1:iiyilsiSlIXi,  l<j<n-l (5) 

and appending endpoints S0:n=0, Sn:n=l. Development here focuses on the ordered values 

0=S0:n<S1.n<...<Sn.1:n<Sn.n=l and their corresponding differences 

Dj = (n-j+D(Xj:n-Xj.1:n)/21<i<nXi,  l<j<n. (6) 

Under the exponential composite null hypothesis, the scale-free statistics defined by (5) and (6) 

are distributed as order statistics and spacings for a sample of 
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n-1 from the uniform distribution on (0,1), respectively, with ESJ:n=j/n, VarSj.n=j(n-j)/n2(n+l), 

Cbv(Si:n,Sj:n)=i(n-j)/n2(n+l), i<j, andEDj=l/n, VarDj=(n-l)/n2(n+l), Cov^D^- 

l/n2(n+l), i*j. 

Although various TTT exponentiality tests assess uniformity of values from (5), those of main 

concern here are the Gini statistic, the squared coefficient of variation, and a discrete EQF 

Anderson-Darling analogue of (4). 

Employing TTT spacings (6), Gail and Gastwirth (1978a) defined the Gini statistic Gn as 

Gn = Ii<j<„.i j(n-j) (Xj+^-Xj^/Oi-DI^^Xi. (7) 

In notation here, Gn = £o<j<n-i j Dj/(n-l) and summation by parts shows that (7) is algebraically 

equivalent to the cumulative total time on test statistic Vn=£1<:<n_1Sj.n/(n-l)=l-Gn. 

As the sample analogue of (2), the squared coefficient of variation CVn
2 for the normalized 

sample spacings is written äs 

CVn2 = [nV(n-l)] 1^ (Dj - l/n)2. (8) 

From the TTT spacings moment expressions given previously, it follows that CVn
2 has null 

expectation l-l/(n+l). 

The new TTT omnibus scale-free test criterion for exponentiality under primary consideration 

here is the discrete analogue of the Anderson-Darling EDF statistic defined by 

QV = n(n+l) 1^! (Sj:n -j/n)2/j(n-j). (9) 

This quadratic statistic, which is the sample version of (4), was introduced as an EQF test of 

uniformity in Kaigh (1992b, eq. 2.8). The statistic QAn
2 has null exponential expectation 1-1/n 

and limiting distribution that of the asymptotic weighted sum of chi-square variates for the usual 

Anderson-Darling statistic [see Durbin and Knott (1972) or Shorack and Wellner (1986), p. 225]. 

Later we show that the Gini statistic is equivalent to the first TTT component in the orthogonal 

component decomposition of QAn2. Unlike Gn, which employs only the first TTT component, the 
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quadratic statistics CVn
2 and QA„2 utilize all sample TTT components. Instead of assigning equal 

weight to each TTT component, however, QA„2 incorporates component damping as suggested by 

Shorack and Wellner (1986, p. 226) to diminish power dilution effects from nonresponsive high 

frequency terms. Viewed in this sense, the new criterion QA^2 is a compromise between the Gini 

statistic and the coefficient of variation scale-free tests of exponentiality. 

As a basis for comparison with QAn
2, the conventional Anderson-Darling statistic contrasts the 

EDF of the scaled TTT with the identity function on (0,1). For this quadratic criterion, employed 

here as a test of exponentiality with null mean one, a TTT computational formula (see Shorack and 

Wellner, 1986 p. 227) is 

FV= (n-D-1 Iisjs».! (2j-l) log[l/Sj:n (1-Sn.j:n)] - (n-1). (10) 

Incorporating both EDF and EQF contributions, a hybrid exponentiality criterion is defined as 

the simple average 

FQAn
2 = (l/2)(FV+QAn

2). OD 

Intuitively appealing, such blending is actually required to avoid a disturbing asymmetry with rank 

spacings statistics in Kaigh (1992b) for the nonparametric two-sample problem. More general than 

the one-sample formulation here, a large sample argument demonstrates that the problems are 

conceptually related. 

From orthogonal component decompositions in the next section, it follows that this hybrid 

statistic also has the same asymptotic null distribution as FA,,2 and QA,,2. For testing the 

composite hypothesis of exponentiality, asymptotic percentage points for FA,,2, QAn
2, and FQAn

2 

at levels .10, .05, .01 are then 1.933, 2.492, 3.857, respectively. 

2. TTT ORTHOGONAL COMPONENT REPRESENTATIONS 

2.1 Orthogonal Component Decompositions 

Following definition of individual TTT components, decompositions of the TTT quadratic 

statistics are developed. In contrast with the EDF approach in Rayner and Best (1986,1989) 

70 



employing the continuous Laguerre orthonormal system on (0,«), we exploit instead the Legendre 

polynomials on [0,1] and the £n orthonormal basis {ao.n-i.JLi.n.i.---«an-i.n.i} consisting of 

Hahn polynomial vectors. 

The discrete Hahn polynomial orthonormal vectors are generated by application of the Gram- 

Schmidt process to the n vectors with entries of the form jk, l<j£n, for exponents k=0,...,n-l. 

Related closely to the continuous Legendre polynomials, the Hahn polynomial orthonormal vector 

basis includes the unit vector of constants n1/2ln=n-l/2[l 1]T as^ nA and higher-order 

vectors with entries which are linear, quadratic, cubic, etc. [for further background on Hahn 

polynomials see Kaigh (1992a,b); Neuman and Schonbach (1974); Nikiforov, Suslov, and Uvarov 

(1991); Rayner and Best (1989]. 

Using spacings from (6), the TIT component statistics are (random) inner products defined by 

Z* n = -[n(n+l)]i/2 lliisa Ttfc.n.^Dj, l<k<n-l. (12) 

Identified later as sample versions of the scaled TTT Fourier coefficients from (1), these scale-free 

components satisfy Zk>n = -(n+l)1/2 (Tkn / X) in terms of the normalized spacings inner products 

Tk.n = n-W X^ ^(j) (n-j+1) (Xj:n-XH;n). (13) 

For the exponential distribution with mean ß, the normalized spacings are iid exponential 

themselves so ETkn=0 and VarTkn=ß2/n. Because the exponential sample mean with expectation 

ß and variance ßVn is a sufficient statistic, Basu's theorem shows that Zk n and X are 

independent Simple expectation calculations demonstrate that the TTT components (12) are 

uncorrelated rv's, each with mean zero and variance one under the exponential null hypothesis. 

Arguments presented later show Tkn / X converges with probability one to the Fourier coefficient 

of the scaled total time on test functional from (1) for both alternative and exponential distributions. 

As an orthonormal basis the Hahn polynomial vectors represent the TTT spacings vector D 

with entries (6) as D=I05k<n.1(iLT
k.„.iD)2Lk.n.i=ln/n+Ii<k<„(2L\,n-iI»Itjc.n-i- ™s relation' 

which shows that the n-1 components in (12) written as Zk,n=4n(n+l)]1/2a.T k.n-iD «« 
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algebraically equivalent to the TTT, establishes a components decomposition analogue of (2) as 

CVn2 = [n/(n-l)(n+l)] I,^., ZM
2 . (14) 

Demonstrating equivalence of several quadratic exponentiality tests, Currie and Stephens (1986) 

showed that CVn
2 is essentially the Greenwood (1946) statistic for uniformity applied to TTT. 

To avoid further mathematical digression and notation, a similar components decomposition for 

QAn
2 derived along the lines of (3) and (4) (see Kaigh, 1992a) is merely stated here as 

QV^i^n-itlMs+DJZ^. (15) 

The above representation for QAj,2 employing EQF components is similar in form to that for FA,,2 

in Shorack and Wellner (1986, p. 225) involving EDF components. Results in Kaigh (1992a, 

Theorem 2), which demonstrate null asymptotic equivalence of EQF and EDF uniformity 

components, establish identical limiting distributions for the scale-free statistics FA,,2, QAn
2,and 

FQAn
2 under exponentiality. 

2.2 Components and Fourier Coefficient Estimators 

Attention now will focus on individual TTT components (12) and their asymptotic distribution 

theory. Results under the composite null hypothesis are reproduced from Kaigh (1992a) as 

Theorem 1.   Suppose Xlf... ,Xn are iid exponential rv's with mean ß and TTT spacings vector 

D=[D1,...,DnF with entries Dj = (n-j+1) (X^-X^^/X^^X;. The TTT components are 

random inner products with respect to the Hahn polynomial vector orthonormal basis given by 

Zg n = - [n(n+l)]1^2 7is nl
T D,   l<s<n-l .These components are uncorrelated statistics satisfying 

i)   £2^ = 0 

E Z^ = - 2[ni/2(n+l)1/2/(n+2)] Zlsisn [rcs,n.i(i)]3 

E Z^ = [n(n+l)/(n+2)(n+3)] (3 + 6SKi£n [^.„^(i)]4} 

EZs>n
2Ztjn

2 = [n(n+l)/(n+2)(n+3)]{l+6I1<i<n[7tSin.1(i)]2Kn.i(i))2}, s*t 

ii) Zj n => iV(0,l) for each fixed s as n-»<». 
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It can be shown that the null third and fourth moments above converge to the limiting standard 

normal values and that Corr(Z,. n
2, Z,n

2)-»0 as n-*». Further distinguishing the TTT 

components here from those in Rayner and Best (1986,1989), only asymptotically do the 

corresponding Laguerre EDF components produce zero null means. 

Using finite-difference notation Ag(x)=g(x+l)-g(x), summation by parts shows that the TTT 

spacings component (9) admits the L-statistic representation 

Zk.n-Wn+Diwa^.^ [Vk.n-i(J)](Sj:n-.i/n). 

Because the first Hahn polynomial vector «iin.i(jH12/(n-l)n(n+l)]1/2Ij-(n+l)/2] is linear, 

the TTT location component Zl^=[12(it-l)]x^(Vtrlf2) is equivalent to the cumulative total time 

on test and Gini statistics, standardized to have null mean zero and variance one. Sharing an 

asymptotic minimax property with Vn, the statistic Gn was employed as a benchmark criterion by 

Rayner and Best (1986,1989) for evaluation of their EDF smooth tests for exponentiality. Close 

connections with the L-moments in Hosking (1990) indicate that the second, third, and fourth 

order components, respectively, measure TTT scale, skewness, and kurtosis departures from the 

identity function. 

We examine first the Fourier coefficient functionals in (1) and then related behavior of 

individual TTT components under alternative models. Writing 1^(0) for the mean of the rth order 

statistic in a sample of size k from F, calculations similar to those in Kaigh (1992a, sec. 4.3) show 

k 

kisink(t)(l-t)q(t) dt = (2k+l)W (k+l)-i Io<r<k(-Dk-r ( r )(k-r+l)Qir+i:k+1(QHiI:k+i(Q)]. 

TheH-statistic for m:k(Q) with the degree k kernel h(xl,...,xk)=xT:k is the O-statistic (Kaigh, 1988 

or Kaigh and Driscoll, 1987) 

j-l       n-j n 

H:k;n = SlSjSn-1 Kr-1 )( k-r M  k )] Xj:n ■ 

It follows that y_-statistic estimators hk;n of the Fourier coefficients in (1) are then 

k 

hk;n = (2k+l)l/2 (k+l)-l ZosKk H)k-r ( r ) (k^+D (^Wk+1-.n " Mr:k+l;n)- 
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Further calculation with the statistic in (13) produces 

2n-l       2n-l 
Tk,n = 1k,n hk;n   with Tlk>n = [( n+k )/( n )]1'2 (16) 

to yield 

ETk,n = T\ktJl Jo<u<ink(u) (l-u)q(u) du . 

Because T)kn has limit one as n-»°°, standard results on H-statistics in Hoeffding (1948) 

or Serfling (1980) provide 

Theorem 2. Suppose Xi,...,Xn are iid random variables on [0,*») with qdfq and finite 

variance. Let 

Tk,n = n-1/2 IisjSn «k.n-l(i) OH+1) (Xj:„-Xj.1:il) 

^k(q) = J(Ku<ink(u) (1-u) q(u) du 

Ok
2(q) = JJO<U,V<I(UAV-UV) q(u)q(v) (d/du)[(l-u) IIk(u)] (d/dv)[(l-v) nk(v)] dudv. 

For each fixed k as n-»~, n1/2^,, - jik(q)) => rV(0, ok
2(q)). 

Elementary but somewhat tedious calculation shows that the asymptotic variance integral 

expression in Theorem 2 has the appropriate value ß2 for exponential distributions. 

It follows also that Tk n / X converges with probability one to the Fourier coefficient of the 

scaled total time on test functional from (2). Essentially a standardized ratio of U-statistics, the 

scale-free component Zkn=-(n+l)1/2Tik,n(hk-n / X) from (12) then has asymptotic normal 

distribution under alternatives (see Hoeffding 1948, Theorem 7.5). Although computable, the 

three-term asymptotic variance expression which includes the Theorem 2 expression ck
2(q) is 

quite complicated. Because convergence of U-statistics ratios to their limiting normal distributions 

is typically slow (see Schechtman and Vitzhaki, 1987), the asymptotic alternative distribution of the 

scale-free TTT components is not explicitly stated here. To assess performance of the statistics 

(12) for a specific alternative, however, an adequate qualitative approximation is 
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EZ^2 - 1 + n [f^, nk(u) d-u)q(u) du / uP - 

Observe that this approximation is exact under the null hypothesis and that the Fourier coefficient 

of the total time on test derivative provides the dominant term for alternative distributions. 

3. MONTE CARLO POWER COMPARISONS 

To investigate efficiency properties and asymptotic distribution theory for individual 

components and the new omnibus statistics QAn
2 and FQAn

2, a Monte Carlo power study with 

sample sizes n=20,40 was performed with 10,000 simulated samples from the standard 

exponential distribution (ß=l) and several alternative distributions. For empirical power 

comparisons with QA„2 and FQAn2, t^ie Gini statistic Gn, the squared coefficient of variation 

CVn
2, and the EDF Anderson-Darling statistic FA,,2 were included as well. 

Empirical rejection proportions for n=20 only are presented in Table 1. Nominal significance 

levels employed for the fourteen alternatives in Table 1(a) and for the ten alternatives in Table 1(b) 

were 0.10 and 0.05, respectively. Interpolation with critical values for the Greenwood statistic in 

D'Agostino and Stephens (1986, Table 8.3) provided percentage points for CVn
2, whereas 

asymptotic percentage points were employed for the statistics Gn, FA,,2, QAn
2, and FQAn

2. 

Results not presented here are consistent with Table 1 to indicate that asymptotic distribution theory 

of individual components provides adequate approximations for small samples. 

Probability density functions for all alternative distributions other than the arcsin [cdf 

F(x)=l/2+(l/7t)Sin-1(2x-l), 0<x<l] appear in Gail and Gastwirth (1978b, Table 3) or in Angus 

(1982). Except for the arcsin, all alternatives have been used in previous power studies by either 

Gail and Gastwirth(l978a,b), Lin and Mudholkar (1980), Angus (1982), or Rayner and Best 

(1986,1989). For convenient cross-referencing, the alternative-significance level configurations 

in Table 1 facilitate comparisons of rejection proportions here with those for other statistics 

reported in previous studies. 

Overall, FAn
2, QAn

2, and FQA,,2 emerge as the best omnibus test statistics. Results in Table 1 
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Table 1. Empirical Power Comparisons for n = 20 

(a) a = 0.10 

Distribution Q>0 cv20
2 

a^o2 F/W rc*20
2 

X!2 
.6487 .3716 .6421 .7482 .7107 

fc2 .2910 .1213 .2865 .2740 .2844 

X42 .6148 .2541 .6208 .5857 .6123 

fc2 .9957 .8277 .9973 .9948 .9965 

Log normal (0.6) .8881 .7124 .9646 .9177 .9488 

Log normal (0.8) .3574 .2511 .5065 .3999 .4620 

Log normal (1.0) .1852 .1665 .2737 .2173 .2500 

Log normal (1.2) .3791 .2674 .4112 .3809 .3979 

Vfeibull (0.5) .9434 .7336 .9417 .9671 .9589 

Wfeibull (2.0) .9787 .6115 .9730 .9695 .9720 

Beta (1,2) .4046 .1823 .3660 .4198 :3936 

0.5 (Xas2^2) .5850 .5106 .6902 .9081 .8601 

0.5(z,2+Xs2) .2347 .2702 .2786 .4726 .3945 

Arcsin .3769 .5413 .6346 .8659 .7942 

Null .1028 .0981 

(b) a * 0.05 

.0960 .0997 .0979 

Distribution Q>0 CV20* QAso2 FAjo rcy\2o 

Wfeibull (0.8) .2398 .1167 .2320 .2599 .2483 

Wfeibull (1.5) .4928 .1497 .4863 .4604 .4777 

Uniform (0, 2) .7136 .2674 .6937 .8005 .7583 

Pareto(3) .7954 1.0000 1.0000 .9918 .9992 

Shifted Pareto (3) .4704 .2973 .4797 .4651 .4760 

Shifted Exponential (0.2) .2264 .1451 .3451 .2167 .2846 

Gamma (2) .4672 .1551 .4990 .4443 .4771 

0.5(Xo.5
2+X4

2) .4732 .3586 .5521 .8590 .7840 

0.5 (x,^2) .1510 .1650 .1677 .3493 .2688 

Aicsin .2735 .3949 .4432 .7647 .6568 

Null .0498 .0500 .0531 .0531 .0522 
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show that CVn
2 performs poorly against all alternatives and that the Gini statistic almost always 

produces fewer rejections than both QAn
2 and An

2 and their hybrid average. In particular, Gn 

provides little protection against lognormal and "bathtub" failure rate (BFR) alternatives. The BFR 

alternatives, which include the arcsin and chisquare mixtures, have hazard rates which initially 

decrease and then increase. Comparing QAn
2 and An

2 directly, these test statistics produce similar 

rejection proportions, with QAn
2 slightly more powerful for a slim majority of the alternatives 

investigated. Differences in performance are most pronounced for lognormal and BFR 

alternatives. For lognormal alternatives, QAn
2 is clearly the more powerful; although exhibiting 

considerably more power than the Gini statistic, QAn
2 offers less protection than An

2 against BFR 

alternatives. 

Comparing results with previous power studies, QAn
2 and FQAn

2 are certainly competitive 

with other test statistics proposed in the literature (Angus, 1982; Lin and Mudholkar, 1980; Rayner 

and Best 1986,1989). Supported by these Monte Carlo results, we recommend the statistic 

FQAn
2 as an omnibus scale-free for exponentiality. Despite never exhibiting power to exceed that 

of both FAj,2 and QAn
2, hybrid rejection percentages were always closer to the maximum value. 

All simulations employed an IBM 4381 (32 bit word). For distributions without closed form 

quantile functions, IMSL routines were used; all other distributions were sampled by applying the 

transformation log[l/(l-U)] to each of n+1 uniform variates obtained from the random number 

generator (the nth uniform is defined by Un= 1,/P with P=231-l and In generated by the 

multiplicative congruential generator L=In.1*16807 mod P). The logarithms produce a sample of 

n+1 iid standard exponential random variables, which is then employed to provide n uniform order 

statistics without data sorting (Shorack and Wellner, 1986, p. 335). Alternative distribution 

samples were obtained from uniform order statistics by qf transformation. 

4. ASSESSING EXPONENTIALITY: AN EXAMPLE 

Illustrating application of the significance tests to real data, we integrate discussion of general 

TTT descriptive techniques as well. The following twenty bearing operational lifetimes (in hours) 
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were presented in Angus (1982) and further analyzed by Rayner and Best (1986,1989): 

2398, 2812, 3113, 3212, 3253, 5236, 6215, 6278, 7725, 8604, 9003, 9350, 9460, 11584, 11825, 12628, 12888, 

13431, 14266, 17809. 

4.1 Components and Significance Tests 

Numerical calculation of the first four TTT spacings components is illustrated in Table 2. This 

computational display of individual inner product terms can identify the source of a large 

component value. Resulting inner products are then normalized to produce component numerical 

values. Exploiting a three-term recursive relation (see Kaigh, 1992a, Table 1), generation of Hahn 

polynomial vectors with integer entries and squared norms [l/(2k+l)](n+k)!/(n-k-l)! for machine 

calculation with (12) is quite simple. Because manual input is required for only the initial constant 

and linear entries, the necessary calculations are easily performed with a simple desktop computer 

spreadsheet program. Only the first four components are treated in Table 2, but the computational 

scheme permits calculation of higher order components as well. 

Computed values for all nineteen TTT spacings components are 

2.97, -1.24, 1.41, -2.32, 2.27. -2.12, .68, .17, .13, -.02, -.04, -1.19. 1.28, .49. -1.24, .57, -.90 , -1.09, .10. 

As typical, low frequency components capture most of the spacings variation. For these data the 

first six components account for about 78% of the total sum of component squares value 35.1. To 

assess statistical significance, individual TTT components are compared to standard normal 

percentage points. Accordingly, the first component, which is equivalent to the Gini statistic, is 

highly significant. Aggregating the contributions of individual TTT components, the omnibus 

statistics values CVn
2= 1.759 (.025<p-value<.05) and QA„2= 5.424 (ß-value^.002) also present strong 

evidence against the null exponentiality assumption. Values for the other quadratic statistics are 

FAn
2= 4.912 (u-value=.003) andFQAn

2= 5.168 (ß-value=.002). Now as well as later, asymptotic 

significance probabilities for CVn
2 were obtained from D'Agostino and Stephens (1986, Table 

8.3), whereas those for FA,,2, QAn
2, and FQAn

2 were computed numerically using the algorithm 

in Martynov (1975). 

4.2 TTT Plot and Further Analysis 

The upper portion of Figure 1 shows the TTT plot of discrete points (j/n,Sj.n), j=0,l,...,n, 
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Table 2. Bearing Operational Lives Total Time on Test Data Analysis 

• 

TIT 
Spacings 

x          p( 

Hahn Polynomial 
)          Pi           PI 

Vectors 

P3 P* 0 
Inner Product Terms 

1             2             3 4 

.28      1           1 -19 342 -5814 93024 .28 -5.32 95.77 -1628.07 26049.14 

.05     2           1 -17 234 -2142 ^896 .05 -.78 10.74 -98.33 -224.75 

.03      3           1 -15 138 510 -53856 .03 -.47 4.37 16.15 -1704.92 

.01     4           1 -13 54 2262 -67296 .01 -.13 .53 22.23 -661.32 

.03     5          1 -11 -18 3234 -56976 .03 -.32 -.52 93.96 -1655.38 

.15     6          1 -9 -78 3546 -32976 .15 -1.35 -11.70 531.99 ^947.26 

.07     7          1 -7 -126 3318 -3696 .07 -.51 -9.16 241.12 -268.58 

.01     8          1 [          -5 -162 2670 24144 .01 -.06 -1.88 31.01 280.38 

.10     9          1 -3 -186 1722 45504 .10 -.30 -18.86 174.58 4613.38 

.06   10          1 -1 -198 594 57024 .06 -.06 -11.18 33.53 3219.23 

.02   11 I           1 -198 -594 57024 .02 .02 -4.61 -13.84 1328.49 

.02   12          1 3 -186 -1722 45504 .02 .05 -3.39 -31.40 829.72 

.01    13 I           5 -162 -2670 24144 .01 .03 -.83 -13.72 124.05 

.09   14 I            7 -126 -3318 -3696 .09 .61 -10.94 -288.04 -320.85 

.01    15 I           9 -78 -3546 -32976 .01 .08 -.66 -29.94 -278.42 

.02   16 I          11 •18 -3234 -56976 .02 .26 -.42 -75.81 -1335.63 

.01    17 I          13 54 -2262 -67296 .01 .08 .33 -13.73 -408.62 

.01    18 L          15 138 -510 -53856 .01 .14 1.31 -4.85 -512.28 

.01    19 1          17 234 2142 -4896 .01 .17 2.28 20.88 ^7.74 

.02   20 1         19 342 5814 93024 .02 .39 7.07 120.27 1924.39 

Inner Products 1 -7.48 48.25 -912.00 26003.04 

Components 2.97 -1.24 1.41 -2.32 

NOTE: Components are calculated from the corresponding spacings inner products using the formula 

Z^ =- [n(n+l)]i/2 (2k+l)i/2 [(n-k-Dl/ÖHk)!]1'2 (pk
T D). 
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Figure 1. Scaled Total Time on Test Plots for Bearing Lifetime Data 
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formed for the original twenty bearing lifetimes. For visual comparison corresponding null 

expected values appear along the 45° line. Although noisy, this plot strongly suggests a shifted 

exponential distribution. Returning briefly to Table 2, observe the effect of the first TTT spacing 

with value .28 on the magnitudes of the corresponding inner product terms in the first row. This 

single large spacing is mainly responsible for the magnitudes of the low-frequency components. 

In general, simply subtracting the minimum from each of the original data values produces an 

exponential sample of n-1 (D'Agostino and Stephens, 1986, p. 425). The TTT procedures 

developed in Sections 1 and 2 are then easily adapted to assess the more general model that F is 

exponential with shift parameter y and mean ß both unspecified. 

Subtracting the minimum lifetime 2398 from each original observation and recalculating using 

the shifted lifetime data yields eighteen new component values 

1.63, 1.00, -1.17, -.05, .58, -1.46, .52, .48, -.31, .73, -1.62, .12, 1.92, -1.47, .34, -.57 , -1.69, -.11, 

none of which is significant individually. Calculated values for the aggregate statistics with n=19 

are now CVn
2= 1.138 (ß-value»0.l0), F\2= 2.012 (n-value=.090), QAn

2=1.748 fe-value=.119), and 

FQAn
2=1.880 (B-value=.l06). Although this TTT analysis also casts doubt on exponenoality, the 

results are not statistically significant. 

4.3 Continuous TTT Plots 

The TTT plot is generally useful for many applications in reliability including model 

identification and age replacement theory (see Bergman and Kelfsjö, 1984). Similar treatment 

applies to the shifted data, but we address now only plots of the original twenty bearing lifetimes. 

Although the upper portion of Figure 1 is consistent with the preceding EQF analyses, noise 

obscures the effect. For presentation purposes we recommend the continuous plot displayed in the 

lower portion of Figure 1. This graph was obtained from the Bernstein-like polynomial 

n 
S'(t) = Io<r<n SVn ( r ) f d-0nr, 0<t<l, 

Wit*1 r+J-1        2n-j-r-l       2n-1 

S'.n^Xo^Kr-i )(   n.,i )K " )] Sj:n , l<r<n-l, S'0:n=0 and S'n:„=l. 

Generalized order statistics S*r;n from Kaigh and Cheng (1991) provide the discrete input to the 
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Bernstein operator which then produces a nondecreasing function with the appropriate endpoint 

values zero and one. The continuous function S'(t) would also inherit certain other discrete TTT 

properties including symmetry or concavity. In addition, Legendre and Hahn polynomial relations 

in Kaigh (1992a) establish the component representation 

Jo<t<i [S"(tH]2 [t(l-t)]i dt - (n+l)-i I^^.i [l/k(k+l)] nk.n6 Zfc.n2 

with T|k n as in (16). Similar to the decomposition (15) but with more pronounced emphasis on 

low-order components, this representation demonstrates that the continuous version of the TTT 

also can be used to quantitatively assess exponentiality. 

Although not developed here, application of the Bernstein operator to the original ill values 

(5) also yields a continuous, but somewhat more irregular, TTT plot with weighted squared norm 

obtained by simply substituting Tjk n
2 for t|k n

6 in the decomposition above. It follows that high- 

frequency contributions to the recommended S'(t) are damped considerably more. 

Inherent characteristics of sample TTT values are preserved by the isotonic linear 

transformation with matrix representation specified in the defining expression for S*r:n, but with 

reduced variability. The Lorenz partial order majorization results in Kaigh and Sorto (1992) justify 

mathematically our assertion that the continuous TTT plot is smoother than the original. This fact 

is clearly illustrated in Figure 1. 

4.4 TTT Numerical Summaries 

To further enhance data analysis and description it is useful to have a concise set of numbers 

which summarize the TTT. In this light, we suggest a four-number summary of O-statistics 

employing TTT values (5). 

All TTT spacings components of order k or less can be obtained from the collection of O- 

statistics defined for the TTT by 

j-1      n-j-l      n-1 

Sr:k;n =Il<j<n^l [(r-l)( k-r)/( k )]Sj:n , l^k. 

Related to the L-moments in Hosking (1990), these statistics treat the TTT values and not the 

original data as previously in Section 2.2. Calculations in Kaigh (1988) show that Sr:k;n is a U- 

82 



statistic with mean r/(k+l) for uniform data. The TTT spacings components (12) are standardized 

U-statistics (in the transformed data) with representation as linear combinations of O-statistics 

Z^n-(2k+l)i«(n-i)U2 [(n+k)/(n+i)]l/2Xl£rSk(-l)^( r )[Sr:k:n-r/<k+l)]. 

The location, scale, skewness, and kurtosis TTT components (Zln, Z2,n, Z3 n, Z4 n) are then 

algebraically equivalent to the O-statistic four-number summary [S1:4.n, S2:4;n, S3:4;n, S4.4.J 

corresponding to the null mean vector [.2, .4, .6, .8]. Thus, simple comparison of the Q-statistics 

to the null mean vector can augment informally results from the significance tests and TTT plots. 

In addition, the Q-statistic summary provides a convenient method for comparing TTT plots from 

samples of disparate sizes. To bypass the defining expression given above, a simple recursive 

computational formula (Kaigh, 1988 or Kaigh and Driscoll, 1987) permits rapid machine 

calculation of all n(n-l)/2 Q-statistics for the TTT values (5). 

Returning to the bearing lifetimes a final time, Q-statistic summaries for the original data and 

the shifted data are [.42, .63, .81, .93] and [.24, .53, .76, .91], respectively. In agreement with 

the formal significance tests and the TTT plots, deviations of the shifted data summary from the 

null values [.2, .4, .6, .8] are considerably smaller. 

5. CONCLUDING REMARKS 

Application of Fourier type methods to the TTT yields omnibus as well as directional scale-free 

tests for exponentiality. The asymptotically normal TTT spacings components are essentially point 

estimators of Legendre polynomial Fourier coefficients of the total time on test transform 

derivative. Related to the L-moments in Hosking (1990), the first four components quantify 

location, scale, skewness, and kurtosis departures from exponentiality. Utilizing readily available 

EDF Anderson-Darling asymptotic critical points, the TTT aggregate statistics exhibit good power 

against various exponential alternatives. The recommended hybrid average of both Anderson- 

Darling type statistics effectively integrates EQF information with that from the EDF. A 

polynomial TTT plot provides a useful display for continuous data. A four-number summary of 

O-statistics is proposed for description. Spacings components here with the TTT complement 

related goodness-of-fit measures for the normal distribution recommended by Hosking (1992). 
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DETERMINATION OF THE ECONOMIC ACCEPTABLE QUALITY LEVEL (EAQL) 
J. STEVE CARUSO, INDUSTRIAL ENGINEER 

U.S. ARMY MANAGEMENT ENGINEERING COLLEGE 
ROCK ISLAND, IL  61299-7040 

ABSTRACT 

This paper presents an empirical formula that can be utilized to 
establish a mathematical determination of the AQL, Acceptable 
Quality Level. The AQL is arrived at by determining an Economic 
Acceptable Quality Level (EAQL). A formula is provided as an 
estimate of the EAQL on the premise of a worst case scenario, and 
integrally requires the use of a sampling standard incorporating a 
family of sampling plans. The formula is developed using economic 
(cost) considerations and equates the cost of inspection to the 
cost of correcting deficiencies that may pass the inspection 
station. The sampling standard utilized is ANSI/ASQC Zl.4, (MIL- 
STD-105E), due to a unique mathematical relationship that exists 
where the 3(AQL) = AOQL for the Ac=0 plans. The formula: 

EAQL =  (SHNHCR) > where AQL = EAQL 

n  = Sample size determined using ANSI/ASQC Zl.4, (MIL-STD-105E) 
Standard. 

N  = Lot size 
CI  = Cost of inspecting one unit. 
CR = Cost to correct the deficiency on one unit of product. 

INTRODUCTION 

Specifying an AQL, Acceptable Quality Level, to be incorporated 
into a specification, determined on a quantitative basis, has been 
a long standing problem. Selecting an appropriate AQL in a factory 
for auditing purposes, determined on a quantitative basis, has 
similarly been an unresolved problem. The purpose of this paper is 
to provide a method of determining a suitable AQL in these 
situations. 

To quote J.W. Wiesen (Reference 4), "The AQL can not be set 
scientifically and hence must be set by bargaining or arbitrarily." 
In this same article, Wiesen mentions Enell's decision model 
(Reference 2). Enell's model provides a basis for deciding whether 
to sort or accept a lot without inspection utilizing the known 
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production incoming fraction defective (p). Enell's model is 

P = 1 Pb   A 

Where I = Cost to Inspect One Unit and A = Damage Done By One 
Defective. Lots having an incoming fraction defective quality level 

less than PB should be accepted without sorting, and those having 

an incoming quality level above PB should be sorted. This model is 

acceptable for decisions involving sorting. The model is 
restrictive in that it requires prior knowledge of the process 
average (incoming quality level) in order to arrive at a decision 
by quality personnel as to whether to sort or accept the material 
as is. In attempting to use this approach in a specification for 
material to be delivered in the future, or in an in-plant situation 
where manufacturing has not commenced, the model is not very 
useful. 

DEVELOPING THE MODEL 

Two factors contribute to an empirical approach in the selection of 
an AQL: 
1. An establised sampling standard incorporating a family of 
sampling plans. 
2. An established sequence of steps to be followed when 

administering the standard while sampling. 
The first requirement is satisfied through the use of ANSI/ASQC 
Zl.4 (MIL-STD-105E) "Sampling Procedures And Tables For Inspection 
By Attributes" (Reference 1). It is possible that another published 
or developed standard could be used. However, this standard was 
chosen because of its wide dissemination and the unique empirical 

relationship that exists between AQLs and AOQLs for the Ac = 0 

plans. Table V-A of the standard displays a consistent relationship 
for these plans of 3(AQL) = AOQL. The second requirement is 
satisfied within the standard as follows (see Figure 1): 
Incoming Lot No. 1 (e.g. on rejection). The lot is presented under 
original inspection. The entire sample quantity (n) is inspected. 
On rejection, the defective items are counted.  Identify the 
defective quantity as D. Calculate the estimated portion defective 

"p" using P = —  where n represents the sample size. 
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This calculated value of p is then compared to  Pb   in Enell's 

model to determine whether the remainder of the lot quantity, N-n, 
will be sorted or accepted as is. Thus, this remaining quantity, 
N-n, if screened, is precipitated by a separate independent 
decision. Therefore, in rejected lots, the sampled quantity, n, is 
considered as the total quantity of material inspected. 
Incoming Lot No. 2 (e.g. on acceptance). The only quantity of items 
inspected in lots accepted on original inspection is the sampled 
quantity (n), see Figure 1. Thus, for both rejected and accepted 
lots, n represents the total number of units inspected per lot. 

INCOMING LOT # 1 

INSPECTION 
STATION 

QUANTITY 
INSPECTED = n 

LOT REJECTED D 
QUANTITY SCREENED = N-n 

RESUBMITTED LOT #1 LOT ACCEPTED " 

OUTGOING QUALITY 

AOQ = 0 

INCOMING LOT # 2 
QUANTITY 
INSPECTED = n AOQ ■ SOME VALUE 

" LOT ACCEPTED" 
(ASSUME AOQL IN MODEL ] 

Figure 1.  OPERATION OF INSPECTION STATION 
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The model will require an estimate of the total quantity of 
defective items which get past the inspection station. The best 
estimate of this quantity is the Average Outgoing Quality (AOQ). 
However, every AOQ relates to a specific value of incoming fraction 
defective.  If we elect to establish a known value of incoming 
.fraction defective, we could revert to Enell's model.  Then by 
comparing our value of incoming fraction defective to the 

calculated Pb ,  we can decide whether to sort the material or 

accept "as is". There is a way out of the dilemma.  For any 
sampling plan, we assume the worst condition of AOQ which is the 
Average Outgoing Quality Limit (AOQL) and it represents the average 
amount of unacceptable material which passes the inspection station 
per lot regardless of the incoming rate of defective material. 

These are the two essential theoretical considerations necessary to 
develop the model. The number of items to be inspected per lot and 
the average percent of defective material which gets past the 
inspection station per lot. The model is further developed under 
the assumption of perfect inspection. 

In order to scientifically establish the AQL, there are two costs 
that must be considered.  These two costs are the total cost of 
inspection (labor, materials, equipment, setup, etc) and the total 
cost (or damage) to correct the defects which pass the inspection 
station.  These latter costs are the in-plant failure costs and 
may include external failure costs when the item is delivered 
outside the plant.  The in-plant costs relate to elements such as 
scrap, rework, reassembly, etc.  The external failure costs 
incorporate elements such as liability, replacement, service cost, 
warranty, and goodwill. 

The model is developed by calculating the indifference cost.  The 
indifference cost occurs at the point where the total cost of 
inspection equals the total cost to correct the defects which 
pass the inspection station.  The model is designed to provide 
a best mathematical approximation of the acceptable incoming 
fraction defective at the indifference point. The EAQL is equated 
to this incoming fraction defective. The EAQL will then represent 
that level of incoming fraction defective that for purposes of 
sampling can be assumed satisfactory. The equation will also 
automatically identify those characteristics where 100% inspection 
must be preformed. As the calculated EAQL approaches or equals 0 no 
defective material is authorized to pass the inspection station. 

Development of the indifference equation: 
Total cost of sampling inspection per lot = n x CI. 
Total cost of correcting deficiencies per lot -  AOQL x N x CR. 
Where:  n   = sample size 
N   = lot size 
I  = total cost in dollars to inspect one unit 
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CR  = total cost in dollars to correct the defective 
item (internal and external considerations) 

AOQL = maximum average outing quality limit in percent for a 
sampling plan 

The equation:  n x CI = AOQL x N x CR 
For the Ac=0 Re=l plans in ANSI/ASQC Standard Z1.4 there is a 
unique relationship between the AQL and the AOQL for the normal 
plans.  That relationship is that 3 X AQL - AOQL. 
The equation is altered to:  n x CI = 3 x AQL x CR 
Solve for AQL 

EAQL - 

AQL in percent 

(n) (CI) 
(3) (N) (CR) 

EAQL% =   , ^ (CI^  X100% W      (3) (N) (CR) 

In order to determine the AQL using this equation one must first 
establish the sample size (n). The steps followed in selecting the 
sample size are those normally followed when using ANSI/ASQC Zl.4 
(MIL-STD-105E). First determine the code letter. Enter the "Sample 
Size Code Letters" table with the lot size (N) using general level 
II TO identify the code letter. With the code letter enter the 
"Single Sampling Plans For Normal Inspection" table to select the 
associated sample size. The next step is to calculate the EAQL 
using the equation and the sample size found in the standard. The 
final step is to select a listed AQL from the standard for a plan 

having an Ac=0, Re=*l values which is <.    to the calculated EAQL 

To me 
large 
EAQL. 

To meet this requirement it may be necessary move to a different, 
larger sample size, than was used in the formula to calculate the 

PROCEDURE 

The following information must be specified in order to determine 
the AQL: 
Lot Size (N) 
Cost To Inspect One Unit (CI) 
Cost TO Correct The Defective Item (CR) 
The cost of inspection (CI) should incorporate all identifiable 
charges associated with inspecting one item. It should include all 
direct and indirect labor and material costs. 

The cost to correct the defective item (CR) will incorporate either 
internal failure costs or external failure costs and in some cases 
cost elements from both categories will be incurred. 
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Internal failure costs relate to those charges incurred within the 
plant to correct the defective item such as rework, repair, 
re-inspection, replacement, delays in production, and additional 
material handling. External failure costs incorporate charges for 
injury,  warranty  replacement,  transportation,  liability,  and 
goodwill. The cost elements identified in the internal and external 
failure categories are not easy to estimate but need to be 
estimated when sampling is to be incorporated into the quality 
program. The following examples provide the sequence of steps that 
must be followed in determining the EAQL. 

EAQL Determination Example Number 1 
Basic Information Required For EAQL Determination: 

Lot Size N = 1000 
CI = $.10 per unit 
CR = $5.00 per unit 

Step Number 1 
Enter the standard with the lot size N = 1000 and use General 
Inspection Level II to determine the Code Letter in the "Sample 
Size Code Letters" table. The code letter is "J". From the "Single 
Sampling Plans For Normal Inspection" table locate the sample size 
associated with code letter "J". The sample size is (n)=80. 

Step number 2 
Calculate the EAQL using the formula: 

EAQL-  (3HN)TcR) *100% 

EfiQl% " omooouss'.oo) xl00% " -05% 

Step Number 3 
Establish the EAQL associated with an available sampling plan in 
ANSI/ASQC Z1.4 (MIL-STD-105E). Reenter the "Single Sampling Plans 
For Normal Inspection" table in the standard. Enter the table with 
the established code letter and associated sample size (J, n=80) 
and read to the Ac=0 Re=l plan. The AQL identifying this plan must 
have a value .05% or less. In this case the associated AQL is .15% 
which is substantially larger than our calculated value of .05%. 
Therefore, move down the standard AQL values to find an Ac=0 plan 
with an associated AQL value of .05% or less. The next smallest 
available AQL value found is .04% for the AC=0 plan, Code Letter M, 
with an associated sample size of n=315. Thus, the EAQL to be 
specified is .04%. The sample size of 315 is much larger than 80 
initially used in the formula for calculating the EAQL. However, 
even though the sample size is much larger than economically 
required it still allows for sampling rather than 100 % inspection. 
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In the event that the AQL is to be specified into a requirements 
document; there are two ways it can be done. The following are two 
methods of specifying the AQL (EAQL): 
1. Inspection lot size (N) - 1000 

Normal single 
Level II 
AQL - .04% 

2. Inspection lot size (N) = 1000 
Normal single 
Sample size (n) = 315 
Ac - 0, Re = 1 

The second method avoids any reference to the AQL. 

A comment regarding how closely the cost elements balance in the 
equation using the sample size and AQL values determined from the 
standard in satisfying the EAQL formula calculation. The total cost 
of inspection, (n)(CI) or (315)($.10) « $31.50, does not equal the 
total cost to correct the defective items, (3)(AQL)(N)(CR) or 
(3) ( .0004)(1000)($5.00) = $6.00. This discrepancy occurred because 
the calculated EAQL is not an available AQL in the standard. In 
part, the discrepancy also occurred due to the fact that the 
standard sampling plan sample size was inadequate for the 
calculated EAQL. The example is a worse case scenario where both 
initial determinations are modified in satisfying the procedure 
using the standard. 

EAQL Determination Example Number 2 
Basic Information Required For EAQL Determination: 

Lot Size = 2500 
CI = $15.00 
CR * $250.00 

Step Number 1 
Enter the standard with the lot size N = 2500 and Inspection Level 
II and find the Code Letter and associated sample. The code letter 
is K. The sample size determined from the "single Sampling Plans 
For Normal Inspection" table is n - 125. 
Step Number 2 Calculate the EAQL 

EAQL% =    <n) (CD   x 10Q%  .     (125) ($15.00)   X10Q% . ,1Q% 
^      (3) <N) (CR) (3) (2500) ($25.00) 

This EAQL happens to be equivalent to an available AQL in the 
standard. The sample size required for this lot size and associated 
calculated EAQL conform to an available Ac=0 plan in the standard. 
In this case the total cost of inspection versus the total cost of 
correcting deficiencies should very nearly balance. Total cost of 
inspection, (n)(CI) or (125)($15.00) = $1875.00 is nearly equal to 
the total cost of correcting deficiencies, (AOQL)(N)(CR) or 
(.0029)(2500)($250.00) =$1812.50. The AOQL rather than 3(AQL) was 
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used in the previous expression since the AOQL was available in the 
standard and 3(AQL) = AOQL. These two total cost elements will not 
always balance. These costs will equate when the calculated 
EAQL equals a standard AQL for a Ac=0 plan in the standard as was 
the case here. 

CONCLUDING COMMENTS 

The technique outlined in this paper provides a method of arriving 
at an AQL(EAQL) either to be incorporated into contractual 
documentation or for process evaluation on the plant floor where no 
previous knowledge of the process defective rate exists. 

The approach as outlined has at least three benefits.  The 
methodology generally produces conservative AQLs. the AQLs are 
conservative because the EAQL is calculated using the AOQL or the 
maximum rate of outgoing defective for the sampling plan. Operating 
at any incoming defective rate other than that which produces the 
AOQL generates an AOQ below the AOQL. Also when the calculated EAQL 
and selected sample size do not intersect at an available sampling 
plan the recommendation is to select a tighter AQL which generally 
leads to greater inspection than required by the economic model. 
The method also requires that costs particularly the cost 
consequences of a bad item in the system be considered. In general, 
these costs are ignored because they are difficult to estimate but 
are essential for effective decision making. In some cases the 
model may indicate that  100%  inspection is required.  The 
consequences of allowing even one defective to get by is 
uneconomical. Thirdly, it provides the user with a procedural 
quantitative approximation in establishing the AQL when sampling is 
to be employed. 

The general assumption associated with the determination and use of 
the AQL and its associated sample size is that the lot will be 
assembled and the sample selected, inspected, and the findings 
matched to the acceptance criteria for approval or rejection. Some 
quality practitioners may have trouble accepting the thrust of the 
paper because they associate the AQL with this historical method of 
acceptance sampling versus the use of control charts. There are, 
however, situations which arise where sampling may still be 
utilized. Auditing,for instance, whether for purchased goods or 
internal quality verification will still normally require the use 
of sampling. Processes that, for whatever reason, are not currently 
being tracked with control charts could also utilize sampling if 
deemed appropriate. 

However, this is just one of the uses of this methodology. The 
methodology can also be applied even when variable control charts 
are used. Material produced within a specific time period, such as 
a day, can be considered the lot and identified as the "quantity 
produced in the production interval". Follow the procedure to 
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determine the sample size and AQL. The sample size can then be 
subdivided into the number of subgroups which exhaust the total 
sample size for the production interval. Every time a defect is 
found, while using the control chart, "the quality system is 
challenged". The challenge requires screening of material produced 
and to be produced within that production interval. The standard 
variable control chart procedures can be followed including using 
the standard tests. However, as indicated, an item falling out of 
specification is a rejection and requires lot screening. 

The use of this AQL determination and application in attribute 
control charts is not really effective. Attribute control charts 
normally require a subgroup sample size of at least 50. Therefore, 
the sample size determined under the procedure will be the subgroup 
sample size. The central line can be equated to the EAQL and the 
associated upper and lower control limits calculated for the 
control chart. Though this upper control limit can be established 
it is meaningless. The Ac (acceptance number) =* 0 requires a 
percent defective "p" of 0% for the subgroup. Therefore, problem 
detection is signaled by a defect not position or run conditions on 
the chart. For informational purposes the chart can be constructed 
and lot fraction can be tracked on the chart. The fraction 
defective can be calculated either from the information generated 
from the subgroup sample size or after the material is screened 
which would provide a more accurate estimate of fraction defective. 
The chart thus indicates quality status. 
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Terms: 

n  = The sample size found using the appropriate code 

letter based on the inspection lot size using General 

Inspection Level II and Normal Inspection in ANSI/ASQC 

Zl.4, (MIL-STD-105E) Standard. 

N  = Inspection Lot Size (Must be specified in order that 

the sample size be selected). 

AQL = The acceptable quality level expressed which, for the 

purposes of sampling inspection, can be considered the 

limit of satisfactory process average. 

EAQL= Economic Acceptable quality level equated to the AQL 

and determined using cost considerations. 

CI = Total cost in dollars to inspect one unit (materials, 

labor, Instrumentation, etc.) 

CR = Total cost in dollars to repair or replace a defective 

unit. For work in process, total internal cost; for 

field failures, total external plus any internal cost. 

Ac  - Acceptance Number, the maximum number of defects or 

defectives found in the sample which if not exceeded 

allows acceptance of the lot. 

Re = Rejection Number, lot rejection is recommended when 

this number of defects or defectives is found in the 

sample. 
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Abstract 

In the search for Pareto glitches, almost all testing is done one variable 
at a time. In many situations, however, the time-indexed observables are 
vectors. A procedure for obtaining trimmed multivariate estimates of 
location is presented. We propose various parametric testing procedures 
to exploit some of the special structures generally present in a quality 
control setting. A nonparametric procedure {or determining out of control 
lots is developed. 

1    Introduction. Principles of SPC 
Statistical Process Control (SPC) is baaed on tlie following assumptions about 
the production process: 

• The characteristics of the output are normally distributed- 

• When the process is running correctly (stays "in control"), the parameters 
of this distribution are equal to certain base values: /i = ß0,S — S0. 

• Malfunctions in the process lead to changes in value of one or both pa- 
rameters p = /i„ 2 - 2,. The process is then said to have gone "out of 

control". 

• The process goes out of control as a result of well-defined, assignable and 

removable causes. 

•This research was sponsored by the ARO grant DAAL-03-91-G-0210 
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• Quality of the output is tied to its distributional properties. The items of 
good quality are those which come from the base distribution. The items 
produced while the process is out of control are of low quality. 

These assumptions lead to the following basic paradigm of SPC: 

1. Estimate the parameters of the base distribution of the process. 

This is done based on the history of the process which is treated as a 
mixture of distributions containing the base and the contaminating, out- 
of-control distributions. 

2. Knowing the base distribution, monitor the process to identify the non- 
conforming items. 

3. Identify and remove the factors causing the non-conformities, and thus 
accomplish a lasting improvement in quality 

The methods which can be used to implement SPC have been limited by 
the resources available in the industrial practice where trained statisticians are 
rare, most computing used to be done on hand-held calculators and the com- 
putations need to be done in the real time, since timely identification of the 
non-conforming lots is crucial for tracing the assignable causes. Those condi- 
tions resulted in an adherence to univariate methods and to the likelihood ratio 
tests based on the normal theory. 

Recently, however, the picture has begun to change, as fast computers be- 
come cheaper and more popular. It is now possible to implement methods which 
are more computer intensive but also more robust and not confined to one di- 
mension at a time. Below, we will present three such methods: a compound 
multivariate test to be" used for identification of the out-of-control lots, a rank 
test for the same purpose and not relying on the assumption of normality, and 
the "King of the Mountain" procedure for estimating the mean of the base 
distribution. 

2    Multivariate and Univariate Testing in SPC 
Under the assumptions listed above, testing procedures for the new items are 
straightforward. To test for a shift in location, in a one dimensional situation, 
we use the likelihood ratio test based on statistic: 

a 

where x is the lot average and n is the lot size. ' 
JThe new items are not tested one by one but in batches which reduces the correlation 

between the consecutive test statistics and makes the assumption of normality more tenable 
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In the multivariate case this becomes: 

n(x - n0)' S"1 (x - Mo) ~Xp 

where p is the number of the process' characteristics, and we are using the Y_ 

distribution since the actual variance-covariance matrix £ of the base distribu- 
tion is assumed known.   In both cases, the 0.002 significance level is usually 
used. 

Despite their popularity with researchers in SPC, the multivariate techniques 
are not widely used in the industry practice. When confronted with a process 
with more than one quality characteristic, most professionals will treat it as a 
combination of several univariate processes, and test the new lots separately for 
each characteristic. This approach is perceived as conceptually and computa- 
tionally simple, and also as facilitating discovery of Pareto glitches by identifying 
the out-of-control characteristic. 

On the other hand, the dimension-by-dimension approach to multivariate 
cases has at least two obvious problems. Firstly, it misstates the significance 
level of the overall test. For if we compound p one-dimensional tests at 0.002 
each, the resulting test will have the significance level not equal to 0.002 but 
ranging from 0.002 to 1 - 0.998p depending on the correlations among the vari- 
ables. 

Secondly, the "quasi-multivariate" test obtained by compounding univariate 
tests has a different rejection region than the \2 multivariate test. In the latter 
case, we have an ellipsoid which in the former case we try to approximate with a 
parallelepiped. As the dimensionality increases, one would expect the difference 
in their volumes to increase as well, and thus to cause a sizeable loss of power 
of the dimension-by-dimension test compared to the x2 test. 

To verify this intuition, we investigated the powers of both kinds of tests 
against shifts in the mean vector of the distribution of the new lot. The power 
of the multivariate test was calculated as 

where p is the dimensionality, \l{k) is the 100 (1 - a) percentile of the x2 

distribution with it degrees of freedom and X is the noncentrality parameter: 2 

A = n(x-Mo)'S-1 (i-Mo) 

By analogy, the power of the univariate test is: 

Pl(A)=r rfr(i + 7^r) 

2A.Stuart, J. Ord, Kendall's Advanced Theory of Statistics, p. 870 
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where _ 

A — n   
a 

Hence the power of the overall dimension-by-dimension test can be computed 
by taking the product: 

Pr = l-nf=1[l-P1(A<)l 

where the noncentrality parameter is calculated separately for each dimension: 

i   _„ (*■• ~ Mo.')2 
A,- = n ————^~ 

To make a comparison possible, we adjusted the significance level of the dimension- 
by-dimension approach to: 

a- = 1 - tff-a 

a was set at 0.002, the lot size at 10, and £ was assumed equal to the identity. 
The results of-our inquiry are displayed in Figures 1—5. Figure 1 shows the 

powers of the x2 test and the dimension-by-dimension test for various slippage 
configurations. As we can see, in most cases, (about 75% of the points consid- 
ered) the multivariate test is more powerful than the dimension-by-dimension 
test. There are cases however, (roughly 25% of the points considered) wherein 
most slippage occurs in a single dimension, and then the battery of univariate 
tests outperforms the \2 test. Consequently, we decided to do power compar- 
isons for the two opposite slippage scenarios separately. 

Figures 2, 3, and 4 show power curves and power ratios of both kinds of 
tests for 2, 5, and 10 dimensions. They indicate that the power loss resulting 
from using the multivariate test to detect the one-dimensional slippage is far 
less severe than the power loss resulting from using the dimension-by-dimension 
approach to detect a more balanced slippage configuration. Also, an increase in 
dimensionality clearly favors the multivariate test. 

Furthermore, we have found that as the dimensionality increases, the per- 
centage of cases in which the dimension-by-dimension test outperforms the mul- 
tivariate test goes down, so that the overall performance of the x2 test is even 
better than one might infer from Figures 2—4. 

As a caveat, one should remember that our study assumes an equal proba- 
bility of all slippage configurations with the same noncentrality. In practice, this 
may not be the case. If there is evidence that a particular process goes out of 
control mostly one dimension at a time, the use of the dimension-by -dimension 
approach is much more justified than our results would indicate. 

Finally, we considered performance of both tests when the characteristics 
of the process are correlated. One would expect the dimension-by-dimension 
approach to do poorly in this case, since looking at each characteristic separately 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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assumes their independence. Figure 5 shows an example of a bivariate process 
with the marginal variances equal to 1 and with the correlation coefficient p = 
0.8. Clearly, testing one dimension at a time leads to a severe power loss for 
slippages in the direction opposite to the direction of correlation, but on the 
other hand, it actually gains us some power if the slippage is consistent with 
the covariance structure. 

3    A Compound Test 
Given the strong position of univariate tests in the SPC practice and the advan- 
tages they may have over the multivariate tests in certain cases, we do not expect 
the professionals to completely abandon the former for the latter. Therefore, we 
have investigated a possibility of combining both approaches in one compound 
test consisting of all possible univariate and multivariate tests performed on all 
the subsets of the characteristics under consideration. 

Consider, for example, a process described by five characteristics. Accord- 
ing to our compound procedure, we would first perform all five one-dimensional 

tests, each at the 0.002 significance level, followed by (  „  J = 10 two-dimensional 

tests, again at 0.002 each, and then by f   ,   j = 10 three, (  4  J = 5 four, and 

(   j?   ) = 1 five-dimensional tests. On the whole, there will be (1 + 1)5~ 1 = 31 

tests performed. 
The advantage of this procedure lies in that it combines the good features of 

all the tests it consists of, and therefore, has the highest power for all alternative 
hypotheses, i.e., all slippage configurations. 

There is however, a price to be paid for this advantage. By compounding 
several tests into one, we are increasing the overall significance level. Using the 
Bonferroni inequality: 

Pr(f)Ai)>l-£>r(A?) 
i=i 

we can find an upper bound of this increase. For our example we obtain: a" = 
31 * 0.002 = 0.064. This result, if precise, would disqualify the procedure as 
leading to a very large percentage of false positives. Fortunately, many of the 
individual tests are highly dependent, so we expect the actual significance level 
to be much smaller than the upper bound. The simulation results shown below 
confirm this expectation. In most cases, the overall a is not much higher than the 
probability of the type I error resulting just from combining the one dimensional 
tests. 
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Figure 6. 
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Figure 7. 

Alpha adjusted to the compound test 
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Figure 8. 

Alpha adjusted to the compound test 
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Simulated a-levels of the proposed compound test 
for various dimensionalities (p) and lot sizes (n) 

n=5 n=10 n=15 n=2Q n=50 n=100 
p=2 0.00434 0.00466 0.00494 0.00508 0.00512 0.00528 
p=3 0.00756 0.00722 0-00720 0.00720 0.00704 0.00826 
p=4 0.01126 0.01072 0.01098 0.01098 0.01108 0.01136 
p=5 0.01536 0.01482 0.01552 0.01544 0.01706 0.01670 
p=10 0.0446 0.04674 0.04474 0.04468 0.04440 0.04674 

Figures 6—8 illustrate a comparison of the proposed compound test to its 
natural competitors. For dimensions p = 2, p = 5, and p = 10, we compared 
the power of the compound test to the powers of its one- and p-dimensional 
component tests, as well as to the powers of those tests when adjusted for the 
increase of the significance level. All results are based on 50,000 simulations, 
and on the assumption that the shifted lot means are distributed uniformly on 

the surface of the hypersphere with radius equal to »/£. 
Given the results obtained, we think that the tradeoff between the increase 

in significance level and the increase in power is advantageous in this case and 
warrants implementation of the procedure. 

4    A Rank Test for Slippage in Location 

The assumption of normality is accepted in the theory and the practice of SPC, 
and it seems to be working well. Still, making this assumption may be very 
hard to justify in some cases, and then, a distribution-free tests would provide 
an interesting alternative. 

We would like to suggest a simple, distance-based rank test for shifts in 
location. It can be characterized as follows: 

1. Let: 

• Xi,..., XN be the mean vectors of the base lots 

• Y be the mean of the pew lot 

. Diiis(xi-xjy (Xi-Xj) 

• Qi = {Xi-YY (Xi-Y) 

• th, = jr *£, Du 

2. The test rejects the hypothesis of no shift in location if 

Q.>Max(Du DNi.) 
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3. The significance level of this test is j/~ 

To establish the validity of this test we did two stages of simulation studies. 
First, we investigated the relative performance of this test and of the likelihood 
ratio test in the case in which the data was indeed normal and the slippage was 
the same in all dimensions. Under these conditions, the likelihood ratio test 
has more power than any other test of its generality, so we were not hoping to 
improve on it, but only to show that the use of our rank test would not lead to 
a catastrophe. 

Figures 9 and 10 display our results based on 20,000 simulations with N=50. 
Figure 9 shows the power curves of the rank test for dimensions 2— 5 and for 
the diagonal covariance matrices both in the base and in the new lot. Figure 
10 shows the corresponding power ratios, where the denominator is based on 
the likelihood ratio \~ test w'tn the same significance level as the rank test. 
We have observed a rather poor performance for 2 dimensions, which, however, 
improves fast with dimensionality and becomes quite good at p = 5 

In the second stage, we replaced the normal distribution from the first stage 
with the multivariate T-distribution with 3 degrees of freedom. Notably if 

Z    ~   MVN{0,'S) 

z A     =    —p=sss -+■ u 

then 

As expected, the rank test performed worse for small slippages in this case, 
due to the tailiness of the T3. It worked well for larger slippages and also 
maintained its significance level. The results are shown in Figure 11. 

On the other hand, the likelihood ratio test failed completely in this case, 
due to a dramatic increase in the significance level: 

p=2        - Q = 0.12705 

P = Z        - a = 0.25765 

p = 3 a = 0.29925 

p=5   - a = 0.3132 

>= 10 a = 0.55595 

the intended significance level was a = 0.02 in each case. 
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Figure 9. 

Power curves for p=2 
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Figure 10. 
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5    A Portmanteau Rank Test 
The test described above is simple and works well in many cases. Another 
procedure, we have developed, shows a better performance at the price of higher 
complexity. It can be described as follows: 

1. Let 

• {X,-,; : i = 1 7» ,   ; = 1 N) be N lots of n items from the 
base distribution 

• {Y, : i = 1 n} be the new lot 

• X, be the mean vector of the ith base lot 

• X be the mean of the lot means 

• Si be the sample covariance matrix of the ith base lot 

• S be the elementwise average of the sample covariance matrices of 

• Zij be the X,j transformed as: Zij = S        (Xi.j ~ -^0 

the base lots 

Z.j be the X 

Z, be the mean vector of the ith transformed base lot 

Gi be the sample covariance matrix of the ith transformed base lot 

• Qi be the Y< transformed by Z: Q< = S~l/3 (Y> - X) 

• Q, be the mean vector of the transformed new lot 

• M be the sample covariance matrix of the transformed new lot 

• 

2. For each Z, calculate 

3. For each G, calculate: 

p 
■=■2 z.ll=I>-,; 

l|G<H=    E   Gh.« 
j = l, i-l 

4. Analogously, calculate || Q || and || M, || 

5. The test rejects the null hypothesis of the new lot coming from a distri- 
bution similar to the base if: 

||Mi||>-V/ax(]|Gl||,...,||GjV||)    and   || Q ||> Max{\\ % ||, -. .,|| %N 
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6. Since the probability of a type-I error for each element of the conjunction 
is j^pj-, the overall significance level of this test is approximately 

i-u-  ' " iV+lJ 

Clearly, this procedure is much more complex and computer intensive than 
the previous one. To see whether the price is worth paying, we studied the 
performance of this test in the same way as previously. First then, we compared 
our procedure to the likelihood ratio test in the case in which the data was 
normal and the slippage was the same in all dimensions. Secondly, we looked at 
the T3 case. Since there was no change in the covariance structure of the new 
lot, we looked only at the location-based part of the test. 

The results for the normal case are summarized in Figures 12 and 13 which 
display the power curves and the corresponding power ratios. As above, we have 
observed a rapid improvement of performance with the increase in dimension- 
ality. 

The results for T3 are shown in Figure 14. There is a sizeable gain in power 
as compared to the first rank test, which we attribute to the second test's better 
handling of outliers. 

Better performance is not the only advantage of this test however. A ro- 
bust standardization of the base and the new lots will prevent spurious results 
to which the first rank test is susceptible if the scales of different variables 
are different and/or if the variables are correlated. For suppose that X\ has 
the marginal variance twice as large as X2 and that the slippage occurs in the 
direction of Xi only. The first test is likely to fail to reject under these circum- 
stances, because the average distance to the new mean vector, although large 
compared to the variability of X2, will nevertheless be small compared to base 
distances along ,Yi. 

This problem could be remedied within the framework of the first test by ex- 
pressing each variable in units of its marginal variance. It can reappear though 
if the base data are correlated, because, just as in the case of unequal marginal 
variances, the slippage contrary to the direction of correlation would pass un- 
noticed, whereas the slippage in that direction would be overemphasized. 

The second test does not seem to have this problem. 
Finally, the second test is more versatile than the first as it can detect changes 

in the covariance structure of the new lots and not only shifts in location. 

6    Estimating the Mean of the Base Distribu- 
tion 

The estimation of the parameters of the base distribution, which must precede 
testing of the new items, is often presented as a testing procedure itself. It is 
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Figure 12. 
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Figure 13. 
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said to consist in taking the history of the process as the sample, performing 
a LR test on each point to see whether it conforms to the base distribution, 
and in removing the non-conforming points. The estimate of the base location 
parameter is then the mean vector of the points left in the sample. 

Since the statistics required for the test: f and E are now obtained from 
the very same points being tested, one must have the procedure iterate: first, 
one will take the overall mean of the reference points as f and the mean of lot 
variances as E, then perform a likelihood ratio test on each reference point and 
exclude the points for which the test rejects. In the next iteration, the mean 
and the variance are calculated only from the points left in the sample by the 
previous one. The procedure will continue until no more points are rejected. 

Despite such an adjustment, the procedure is not valid. For the likelihood 
ratio tests, it involves, would be valid only if the base distribution had the same 
mean and variance as the joint distribution of all reference points. This is true, 
however, only with no contamination, but then we do not need to test at all. 
Indeed, if there is contamination present, the reference sample mean may have 
a completely unreasonable value, especially if the mean(s) of the contaminating 
distribution(s) is far from the base mean. 

To neutralize this problem, it suffices to notice that the procedure described 
above is not really a test but an iterative trimming, The likelihood ratio rejection 
rules do not have any probabilistic interpretation here. They constitute only a 
stopping rule, chosen more or less arbitrarily, perhaps with consideration of the 
fact that, if indeed there is no contamination in the base sample, our procedure 
will reject only few points if any. 

This procedure is more robust than the simple x because of the use of trim- 
ming, but still shares some of its flaws: it is likely to be suboptimal if the propor- 
tion of contaminants in the sample is high, and especially if their distribution is 
well separated from the base. Consequently, it offers the least protection against 
the cases which are the most serious, and, intuitively, the easiest to handle. 

Other robust estimators of location have been proposed as an improvement 
over the trimmed mean, and they seem to be working well in one dimension. To 
use them in the multivariate settings is more difficult, however, because there is 
no natural, unique ordering here to rely upon. Depending on the approach, there 
may be several multivariate generalizations of the same univariate quantity. For 
the most popular robust estimator of location, the median, we have at least two 
generalizations: 

• the arithmetic median is the vector of the medians of individual variables. 
It is based on the definition of the median as the 50th percentile. 

• the geometric median is defined as the point such that the sum of its dis- 
tances from the sample points is a minimum. It is based on the definition: 

,00 

M = arg min I      | x — y \ dF(x) 
J — oo 
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The geometric median is invariant under the rotation of axes, which is what 
one would expect from a point "central" to the data set. Its only drawback is its 
scale-dependence which may create problems if the contaminating distribution 
has the covariance structure different than the base. 

The arithmetic median has an advantage of being scale invariant but its 
dimension-by-dimension approach is more likely to fail for small separations 
between the base and the contamination, in which case the contaminating points 
may stick out of the main cluster without actually sticking out in any particular 
dimension. 

The following tables illustrate the behavior of both estimators. Displayed 
are the mean squared errors per dimension for the estimates of the mean of the 
dominant distribution, in dimensionalities 2, 5, and 10, mixing proportions of 
60%; 75% and 90% of observations coming from the base distribution and with 
separations between the base and the contaminations of 1, 3 and 5. The results 
are based on 100 simulations in each case, with the number of contaminating 
distributions varying randomly between 1 and 5. 

The Arithmetic Median 

p=2 

n=50 n=100 
dist 60% 75% 90% 60% 75% 90% 

1 0.0655 0.0406 0.0350 0.0463 0.0282 0.0166 
3 0.2318 0.1121 0.0382 0.2025 0.0709 0.0224 
5 0.3251 0.1186 0.0437 0.3232 0.0857 0.0249 

p=5 

n=50 n=sl00 
dist 60% 75% 90% 60% 75% 90% 

I 0.0443 0.0391 0.0298 0.0292 0.0206 0.0171 
3 0.1315 0.0704 0.0348 0.1254 0.0512 0.0206 
5 0.2298 0.1001 0.0428 0.1894 0.0677 0.0212 

p=10 

n=50 n=100 
dist 60% 75% 90% 60% 75% 90% 

1 0.0390 0.0355 0.0328 0.0238 0.0192 0.0163 
3 0.0893 0.0518 0.0390 0.0783 0.0352 0.0178 
5 0.1559 0.0777 0.0369 0.1367 0.0480 0.0213 
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The Geometric Median 

p=2 

n=50 n=100 
dist 60% 75% 90% 60% 75% 90% 

1 0.0603 0.0377 0.0288 0.0424 0.0280 0.0138 
3 0.2287 0.0953 0.0317 0.1934 0.0637 0.0209 
5 0.2926 0.0967 0.0347 0.3017 0.0785 0.0226 

p=5 

n=50 n=100 
dist 60% 75% 90% 60% 75% 90% 

1 0.0347 0.0284 0.0208 0.0269 0.0170 0.0120 
3 0.1167 0.0537 0.0249 0.1166 0.0438 0.0148 
5 0.2108 0.0838 0.0294 0.1769 0.0611 0.0166 

p=X0 

n=50 n=100 
dist 60% 75% 90% 60% 75% 90% 

1 0.0282 0.0246 0.0217 0.0269 0.0170 0.0120 
3 0.0733 0.0411 0.0245 0.1166 0.0438 0.0148 
5 0.1383 0.0613 0.0251 0.1769 0.0611 0.0166 

The corresponding results for the trimmed mean are: 

p=2 

n=50 n=100 
dist 60% 75% 90% 60% 75% 90% 

1 0.0566 0.0345 0.0250 0.0426 0.0266 0.0118 
3 0.3433 0.1644 0.0431 0.3100 0.1404 0.0314 
5 0.8724 0.4099 0.0843 0.9458 0.3377 0.0668 

p=5 

n=50 n=100 
dist 60% 75% 90% 60% 75% 90% 

1 0.0329 0.0276 0.0191 0.0272 0.0159 0.0106 
3 0.1426 0.0716 0.0272 0.1524 0.0637 0.0184 

• 5 0.3929 0.1992 0.0458 0.3564 0.1628 0.0315 
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p=10 

n=50 n=100 
dist 60% 75% 90% 60% 75% 90% 

1 0.0279 0.0235 0.0208 0.0176 0.0136 0.0106 
3 0.0829 0.0489 0.0248 0.0835 0.0366 0.0141 
5 0.2057 0.1022 0.0315 0.1966 0.0796 0.0218 

The median-based estimators are less sensitive to the outliers than the 
trimmed mean and handle better the high contamination/large separation cases. 
The trimmed mean is superior in "well-behaved" cases with a small separation 
and a high proportion of "in-control" observations. 

7    "King of the Mountain" Algorithm 

In an attempt to improve on the estimators presented above, we tried to identify 
and alleviate the shortcomings of each. The median-based estimators show high 
variability and a limited ability to handle the high-separation cases, which seems 
due to the fact that they only discount the outlying observations rather than 
remove them from the sample. 

The trimmed mean has a lower variability but can prove disastrous for the 
high-separation cases. Both features are rooted in its low selectivity: in our 
simulation studies no more than 6%-8% of observations were removed from the 
sample, even under severe contamination. Naturally, the overall proportion 
of rejected points can be increased by diminishing the "acceptance region" on 
which the trimming is based. This however, leads to a biased estimate because 
too many base points are thrown away. 

Based on those observations, we suggest the following "King of the Moun- 
tain" algorithm: 

1. Find X, the mean of the means of the base lots 

2. Find two lots whose means are the furthest apart 

3. Remove this of the two lots found in (2) whose mean further from X 

4. Repeat 1—3 until the number of lots removed equals the expected number 
of contaminated lots in the base sample 

This procedure assumes that component distributions of the mixture are 
spherical (such as MVN(p,I)), but the distances among their means are large 
enough to make the mixture asymmetrical. The algorithm looks at the extreme 
distances among sample points to identify the directions in which the asym- 
metries occur and to trim the sample along those directions. In an attempt 
to retain the base points while removing the contaminations, it focuses on one 
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"side" of the current mean, and throws away this of the extreme points which 
is further from the mean. 

We have done simulation studies of the algorithm's performance in the same 
way as for the other estimators. The results are summarized in the following 
tables: 

p=2 

n=50 n=!00 
dist 60% 75% 90% 60% 75% 90% 

1 0.1047 0.0593 0.0306 0.0665 0.0393 0.0144 
3 0.1503 0.0536 0.0255 0.0660 0.0265 0.0156 
5 0.0528 0.0286 0.0269 0.0178 0.0146 0.0105 

p=5 

n=50 n=100 
dist 60% 75% 90% 60% 75% 90% 

1 0.0612 0.0364 0.0236 0.0366 0.0236 0.0131 
3 0.1056 0.0488 0.0248 0.0558 0.0263 0.0132 
5 0.0565 0.0309 0.0250 0.0215 0.0154 0.0103 

p=10 

n=50 n=100 
dist 60% 75% 90% 60% 75% 90% 

1 0.0473 0.0352 0.0241 0.0294 0-0194 0.0119 
3 0.0693 0.0389 0.0249 0.0559 0.0230 0.0129 
5 0.0407 0.0304 0.0237 0.0243 0.0148 0.0113 

As the simulations indicate, "King of the Mountain" performs well even 
for small separations and relatively high proportion of contaminating lots in 
the base sample, although it underperforms the trimmed mean in those cases 
since the asymmetries in the sample are not large enough. The algorithm's 
performance improves with the magnitude of the slippage and the increase in 
dimensionality. Notably, it is the only one among the estimators studied whose 
performance improves as the separation of component distributions increases. 

8    Conclusions 
Wide availability of fast computers may revolutionize SPC, allowing its pro- 
fessionals to use more sophisticated, more computationally intense procedures 
such as multivariate and nonparametric techniques. 
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Sampling Problems Pertaining to the Number of 
Replications for Stochastic Simulation Models 

William E. Baker 
David W. Webb 

Lawrence D. Losie 

Army Research Laboratory 
APG, MD 21005-5068 

The Survivability/Lethality Analysis Directorate of the Army Re- 
search Laboratory utilizes a hierarchy of simulation models to evalu- 
ate the vulnerability of armored fighting vehicles. Central to this pro- 
cess is the examination of the damage state of critical components. 
The damage state vector is actually an n- tuple, each element of which 
represents a critical component. Thus, each element can take on the 
value 0 (no kill) or 1 (kill), implying that for a system with n critical 
components, there are 2" possible damage states. There is interest in 
the distribution of this random variable. In attempting to compare the 
consistency of live-fire results with the output from a stochastic simu- 
lation model, the following problems have arisen concerning the dis- 
tribution of component damage states: 

1) There are instances when the live-fire result does not match the 
output from any individual replication of the simulation. 

2) There are instances when many (much greater than 5%) of the 
replications of the simulation output a unique damage state, thus mak- 
ing the tail of the empirical distribution function rather nebulous. 

Assuming we know the probability of a kill (p) for each of n indepen- 
dent components in a damage state, we have been able to determine 
how many shots must be fired (or, alternatively, how many times the 
simulation must be replicated) to be x% confident that we have seen 
y% of the distribution of the damage states. However, for many values 
of p and n and typical values of x and y, this number of shots/replica- 
tions is impracticable. The question then follows: 

t  Are there statistical techniques that allow us to address the 
problems mentioned above when the number of simulation repli- 
cations necessary to adequately describe the distribution of the 
damage state vectors is impracticable? 
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Introduction to Question 

Over the years the Ballistic Research Laboratory (now the Army Research Laboratory) has 
utilized a hierarchy of simulation models to evaluate the vulnerability of armored fighting ve- 
hicles. This hierarchy includes a stochastic model which was developed in the late 1980's. In 
attempting to check the consistency of results from this model with those of live-fire tests, we 
have developed a statistical procedure for which the null hypothesis is: "Results from the live- 
fire tests are consistent with output from the simulation model" This procedure concentrates on 
the damage state vectors. 

A damage state vector represents the damage state of the vehicle after the threat has occurred 
Assuming the vehicle has n components which are critical to the completion of its mission, the 
damage state vector is, in fact, an n-tuple, each element of which takes on the value 0 or 1, 
indicating the state of the component as either functional or non- functional. If the vehicle has 
ri critical components, then the maximum number of possible damage states is 2n. Statistical 
tests used to compare output from the stochastic simulation model with results of live-fire 
tests have, in the past, estimated the distribution of the damage states by considering the dam- 
age state vectors obtained in 1000 replications of the model. Checking to see whether or not 
the damage state observed in the live-fire test falls in the tail of the resulting empirical dis- 
tribution function has allowed for a decision on the desired consistency question. However, 
the following two problems have arisen: 

1) There are instances when the live - fire result does not match the output from any 
individual replication of the simulation. 

2) There are instances when many (much greater than 5%) of the replications of the 
simulation output a unique damage state, thus making the tail of the empirical distribution 
function rather nebulous. 

For both problems there has been concern that the number of replications of the simulation 
model may have been too small. However, to date there has been no guidance concerning the 
number to which it should be increased. Assuming we know the probability of kill (p) for each 
of n independent components in a damage state, we have been able to determine how many 
times the simulation must be replicated to be x% confident that we have seen y% of the dis- 
tribution of the damage states [1]. However, for many values of p and n and typical values of x 
and y, this number of replications is impracticable. For instance, suppose that there are ten 
critical components in a damage state vector, implying a total of 1024 possible different dam- 
age states. This might be a reasonable number of critical components for a particular compart- 

128 



ment of the vehicle, such as the engine compartment Also, suppose that each of the ten com- 
ponents has a probability of kill equal to 0.5. This is ptobablv a less reasonable assumption. 
Then if we consider 1000 replications of the simulation model, we would expect to see 638 dif- 
ferent damage states representing only 62% of the total distribution. If we were considering 
just five critical components each with a probability of kill equal to 0.5, then we would expect to 
see 32 (100%) different damage states in 1000 replications of the simulation mode!. 

As another example, suppose that there are only five critical components in a damage state 
vector, implying a total of 32 possible different damage states. Furthermore, suppose we would 
like to be sure that we have seen at least 25 of these damage states (approximately 78%). Then, 
if each component has a probability of kill equal to 0.5, we would need only about 50 replica- 
tions of the simulation model. This number increases to about 100 if all probabilities of kill are 
equal to 0.7 and further increases to about 2500 if all probabilities of kill are equal to 0.9. Of 
course, in general, the probabilities will not be equal for any given group of critical compo- 
nents, but analogous results should follow. They are driven by the probability of the least likely 
damage state. In the first case the least likely damage state has a probability of occurrence 
equal to 0.03; in the second case that probability is 0.002; and in the third case that probability is 
0.00001. 

Thus, the results are affected by both the number of critical components in the damage state 
vector and the probability of the least likely damage state. With the former a large number of 
components implies more possible combinations for the damage state vector; with the latter a 
small probability of occurrence for a particular damage state implies more trials before a suc- 
cess is likely. These examples show that in many situations the answer to the question, "How 
many replications of the simulation model are necessary?" is 54 large number!" Since it is often 
not feasible to replicate the simulation model the number of times sufficient to establish a good 
estimate of the distribution of damage states, we ask the following question: 

Are there statistical techniques that allow us to address the problems 
mentioned above when the number of simulation model replications 
necessary to adequately describe the distribution of the damage state 
vectors is impracticable? 

Possible Approaches 

There have been remedial approaches suggested for both problems. The first problem has 
been handled by treating the live-fire result never matched in any replication of the simula- 
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tion model as falling in the tail of the distribution for the purpose of testing the null hypothesis. 
This is done, even though a single occurrence on the 1001st replication might have pushed the 
question of whether or not to reject the null hypothesis into the realm of the second problem. 
Currently, the second problem forces us into a no-test situation, in that we are unable to apply 
bur statistical test to examine the null hypothesis. One suggestion for overcoming this problem 
has been to apply bootstrapping to our 1000 outcomes from the simulation model in order to 
obtain an empirical distribution function with a more clearly defined tail. At the present time, 
we have yet to pursue this proposal. 

Panel Suggestions 

The clinical panelists focused on the issue of independence. The consensus seemed to be that 
if the components are indeed dependent, then the problem can be solved only with strong prior 
information using a Bayesian approach. If such information is not available, then the sugges- 
tion was to group the components so that they are independent within a group, perform a sepa- 
rate test for each group, and combine the results of these tests to obtain an overall test statistic 
which may or may not allow for the rejection of the null hypothesis.. There were additional 
comments from both the panelists and the audience, including a suggestion to examine the lit- 
erature pertaining to importance sampling for rare events. 

Reference 

[1] Lawrence D. Losie, "Examination of the Distribution of the Number of Component-Damage States", 
Army Research Laboratory Report, In Preparation. 
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Formalizing the Determination 
of Spall Cone Angle 

Barry A. Bodt 
Army Research Laboratory 

In certain applications in ballistic testing it is desirable to compute a rough measure of the 
damaging capability of spall. This measure is dependent on two inputs. One is the cone angle, the 
vertex angle of an assumed right circular cone representing the path of the debris cloud behind a plate. 
The issue is determining this angle based on the location of the target exit hole and the impact 
locations of spall fragments recorded in a witness plate beyond the exit hole. Current procedure leaves 
outlier identification and the choice of cone angle to the experience of the vulnerability analyst. This 
process must be formalized to make cone angle an objectively determined quantity which can be 
automated easily. This clinical paper was intended to generate the discussion of possible solutions to 
the determination of the spall cone angle. 

1. Introduction 

An important lethal characteristic of antiarmor munitions is the ability to 
generate spall-fragments produced by ballistic perforation of armor. Translating 
spall to munition effectiveness is a recurring exercise. An inexpensive characterization 
of spall, used when comparing munition or armor prototypes, consists of counting the 
number of fragments generated and determining the angle of the spall cone, a solid 
right circular cone having a vertex at the point of munition exit through the armor. 
Not all fragments observed are necessarily contained in the representative spall cone. 
The choice of cone angle should be consistent with the idea that there is a sufficient 
density of fragments to cause components of the target within the cone to be hit with 
high probability. Determination of the cone angle is based on a subjective judgement 
as to which subset of the fragment trajectories should be included in the cone angle 
computation. The goal of this effort is to formalize a method for determining the cone 
angle which is in the spirit of the subjective estimates now made, which lends itself to 
automation, and which will yield more consistent results over a variety of data- 
structures. 

2. Problem 

In order to fully understand the question posed the complete problem is 
presented, beginning with the data collection and concluding with the analysis. This is 
followed by a brief discussion of considerations and suggested approaches. The 
principle interest is to receive recommendations for how one might best determine a 
cone angle. 

Data are collected and processed with respect to the spall-cone concept. A test 
set-up consists of a target and a witness plate. See Figure 1. Debris consisting of both 
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Figure 1. Test set-up. 

determination plane 
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Figure 2. Determination plane. 
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armor fragments from the rear face of the target and penetrator fragments are 
generated when a penetrator perforates the target. A record of this debris for later 
review is created when the debris passes through a witness plate, a thin sheet of metal 
located behind the target. The witness plate is scanned by computer to determine the 
(x, y) coordinates in the witness plate plane. Through use of an iterative procedure 
(discussed in the appendix) points are then projected to a plane where the 
determination of cone angle is made. Figure 2 illustrates this "determination" plane. 
A normal vector (the delta ray) to the determination plane extends from the point 
representing the target exit hole backward to (xd, yd), where the subscript d indicates 
that the average is taken over the point projections in the determination plane. The 
delta ray becomes the axis of the cone having circular base in the determination plane 
and vertex, the target exit hole. 

After transformation, the analyst is concerned only with the point projections 
in the determination plane. The cone should envelop a substantive portion of the 
debris, consequently its circularbase should include most of the (x, y) coordinates in 
this plane. The base center is (xd, yd). Through visual inspection a central portion of 
the data are chosen about the center-essentially some apparent outliers may be 
ignored. The point, p , furthest from the center but within the central portion is 
identified. The angle between the delta ray and the vector extending forward from p 
to the target exit hole is the cone semiangle. Figures 3-4 show typical data sets with 
observations judged unusual noted. In each, zero represents the impact location of the 
largest fragment. 

Once established, the cone angle, indicating how wide spread the damage 
might be, and the number of fragments generated, indicating the intensity of the 
fragment spray, are jointly used to assess effectiveness. From the perspective of 
munition effectiveness, the worst result-no spall-would be (w=0, z=0), where w is 
the cone angle and z the number of fragments. Positive values for each show the 
potential for spall damage. It is further argued that if the two measures are treated as 
contributing equally to damage, that the distance between the origin and the point 
defined by the observed cone angle and number of fragments might serve as a 
reasonable measure of effectiveness -some scaling would be required. Comparing two 
munitions could then be accomplished with a univariate analysis, based on several 
shots, leaving the causes of significant differences to be pursued in terms of cone angle 
and number of fragments individually. 

A second univariate measure would use a vulnerability model to predict the 
lethality of the munition based on cone angle and number of fragment inputs. The 
univariate analysis could proceed similarly. 
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3. Thoughts 

There are a few considerations one must be cognizant of in proposing solutions 
to the problem. The spall-cone concept is here to stay and is totally consistent with the 
way vulnerability models are constructed and interpreted. The application is intended 
to be a rough comparison of munition effectiveness answering How does a candidate 
munition's effectiveness compare against that of a baseline munition? or Where does 
the candidate munition fall short? A univariate measure to describe effectiveness is 
necessary in the sense that a ranking of performance is needed. It is insufficient to 
simply detect a difference between two bivariate point clouds without any means to 
say which is better. 

Specific to the cone angle determination, we would like the angle to be 
accurate in some sense and to be determined consistently in a robust fashion. The 
subjective manner in which the cone is now established is troublesome from the 
viewpoint of consistency; although, relying on the judgement of experts on the 
damaging capability of spall, is in a sense accurate. Some ideas proposed follow. 

One suggestion is to not look at the bivariate data to determine the cone angle. 
Rather, use each point in the determination plane to form a possible cone semiangle. 
An empirical distribution of cone semiangles could now be studied for the presence of 
outliers. 

Another suggestion, if the bivariate data were normal is to consider the 
distance from the center, distributed as a Rayleigh. Perhaps the cone semiangle could 
be based on some quantile of that distributioa Some believe that a bivariate Weibull 
or normal model would describe the data well. Perhaps other covering-circle 
approaches would be appropriate. A caution with this suggestion and the preceding 
might be that points appearing to be outliers in a scatterplot might not show up as 
unusual in terms of a single univariate measure, perhaps resulting in an artificially 
large cone angle. 

Responding to that concern, another suggestion is to divide the bivariate cloud 
into angular segments, perhaps looking for the maximum distance that maintains a 
reasonable intensity of points as you move away from the center along each of the 
segments. 

4. Panel Discussion 

The panel discussion was most worthwhile. The session chairman, Terry 
Cronin, and the discussants Nozer Singpurwalla, James Hodges, David Scott, and 
Donald Gaver each had suggestions. Their offerings are not detailed here but briefly 
one used a Bayesian approach involving a bivariate t-distribution to model the impact 
locations on the witness plate. Another suggestion was to use nonparametric density 
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estimation to establish an area of damage falling within some quantile on the 
nonparametric density. It was also demonstrated how one could cover the data using 
concentric circles about the center with increasing radii until a stopping rule was 
satisfied. Independently, two recommended that outliers could be sequentially 
removed to conform with an angle requirement for vertices of an outer convex hull 
formed about the data. Each of the approaches mentioned has been summarized and 
included along with other proposals for review by a working group formed to study 
this issue. 

Appendix 

For the purposes of this discussion, the panel can view the witness plate plane 
as being the plane in which the circular base of the cone resides. However, for 
completeness the original plane defined by the witness plate is not usually the plane in 
which the cone angle determination is made. A normal vector to the witness plate 
plane is established, passing through the point marking the exit of the penetrator. This 
vector is termed the delta ray. Conceptually, the delta ray represents the central path 
of the debris. Then the average of the (x, y) coordinates is taken on the witness plate 
plane. If this average differs substantially from the point where the delta ray intersects 
the plane, several steps arejaken. First, a new delta ray is formed extending from the 
target plate exit hole tojxjj). Second, a new plane is defined such that the new delta 
ray is normal to it and (x, y) resides on it. Third, points from the original witness plate 
plane are projected to the new plane by determining the point of intersection between 
the new plane and the vector extending from the target exit hole to the point in the 
witness plate plane. A second iterate of this process begins with a computation of 
(x, y) in the new plane. Several iterations may be requiredjo achieve a delta ray which 
is normal to the deterrnination plane, passes through (x, y) in that plane, and passes 
through the point marking the target exit hole. 
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Models for Assessing the Reliability of Computer Software 

Nozer D. Singpurwalla and Simon P. Wilson 

The George Washington University, Washington. D.C. 20052 

Abstract 

A formal approach for evaluating the reliability of computer software is through probabilistic models 

and statistical methods. This paper is an expository overview of the literature on the former. The 

various probability models for software failure can be classified into two groups; the merits of these 

groups are discussed and an example of their use in decision problems is given in some detail. The 

direction of current and future research is contemplated. 
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1. Introduction. 

Having been developed over the last 20 years, software reliability is a relatively new area of research for 

the statistics and the computer science communities. It arose because of interest in trying to predict the 

reliability of software, particularly when its failure could be catastrophic. Obviously the software that 

controls an aircraft carrier, a nuclear power station, a submarine or a life-support machine needs to be 

very reliable, and statistical techniques will aid the computer scientist in deciding if such software has 

sufficient reliability, The subject is also of commercial importance, as for example when decisions have 

to be made concerning the release of software into the marketplace. 

All software is subject to failure, due to the inevitable presence of errors (or bugs) in the code, so the 

first aim of the subject has been to develop models that describe software failure. There are various 

methods of specifying such failure models, and Section 2 discusses these in some detail. It is fair to say 

that this model derivation has been the focus of research so far. Once a failure model has been specified 

then it can be applied to problems such as the optimal time to debug software or deciding whether 

software is ready for release. These applications have received less attention in the literature but are 

becoming more prevelant. We will mention here that there is another approach to software reliability 

that differs considerably from the statistical ideas presented here. This approach attempts to prove the 

reliability, or correctness, of software by formal means of proof, just as one would prove a 

mathematical theorem. This is an exercise in logic, albeit a rather complex one. It works well on small 

programs, for example on a program that computes the factorial function, but becomes a forbidding 

task for even moderately complex pieces of code. Nevertheless, the idea that software can be proved 

correct is appealing. The approach is not discussed further. 

This paper is divided into 5 further sections. Section 2 categorizes the different strategies that have 

been used to model software failure. Section 3 reviews the historical development of the subject by 

describing some of the more commonly used models, and Section 4 shows that many of these models 

can be unified if one adopts a Bayesian position. Section 5 looks at applications of the material 

developed in Section 3, and Section 6 concludes with a look at the current and future direction of the 

subject. We assume that the reader has some familiarity with some basic reliability and probability 

concepts; in particular it is important that he or she has knowledge of some common probability 

distributions, statistical inference and decision making, Poisson processes and the concept of a failure 

rate. 
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2. Model Categorization 

All statistical software reliability models are probabilistic in nature. They attempt to specify the 

probability of software failure in some manner. In looking through the literature, one observes that the 

models developed so far can be broadly classified into two categories 

I ype    I'. Those which propose a probability model for times between successive failure of the 

software, and 

Type III   Those which propose a probability model for the number of failures up to a certain time. 

Time is often taken to be CPU time, or the amount of time that the software is actually running, as 

opposed to real time. In theory, specification via one of these two methods enables one to specify the 

other. So a model that specifies time between failure will also be able to tell you the number of failures 

in a given time, and vice versa. In practice, this may not be straightforward. 

The first of these categories, modeling time between failure, is most commonly accomplished via « 

specification of the failure rate of the software as it is running. When this is the case the model is to be 

of Type 1-1. The failure rate for the i-th time between failure is given, for i=l, 2, 3 .... and a 

probability model results. One distinctive feature of software is that its failure rate may decrease with 

time, as more bugs are discovered and corrected. This contrasts with most mechanical systems which 

will age over time and so have an increasing failure rate. An attempt to debug software may introduce 

more bugs into it, thus tending to increase the failure rate, so the decreasing failure rate assumption is 

somewhat idealized. However, most of the models of this type that are reviewed here have a decreasing 

failure rate. 

Another way to model time between failure is to define a stochastic relationship between successive 

failure times. Models that are specified by this method are known as Type 1-2, and have the 

advantage over Type 1-1 in that they model the times between failure directly, and not via the abstract 

concept of a failure rate. For example, let Tx, T2, ..., Ti( ... be the length of times between successive 

failure of the software. As a simple case, one could declare that Ti+l = pT{ + <;, where p > 0 is a 

constant and f; is an error term (typically some random variable with mean 0). Then p<l would 

indicate decreasing times between failure (software reliability expected to become worse), p=l would 

indicate no expected change in software reliability whilst p>l radicates increasing times between failure 
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(software reliability expected to improve). Those familiar with time series will recognize the 

relationship in this example as an auto-regressive process of order 1: in general, one would say Tj+1= 

f(Tl(T2 Tj) + «i for some function f. 

The second of these categories, modeling the number of failures, uses a point process to count the 

failures. Let M(t) be the number of failures of the software that are observed during time (0,t). M(t) is 

modeled by a Poisson process, which is a stochastic process with the following properties: 

i)   M(0) ss 0 and if s<t then M(s) < M(t).   M(t) takes values in  {0, 1, 2, . . .} 

ii)  The number of failures that occur in disjoint time intervals are independent.  So, for example, the 

number of failures in the first 5 hours of use has no effect on the number of failures in the next 5 

hours. 

iii)    The number of failures to time t is a Poisson random variable with mean ß(t), for some non- 

decreasing function ß(t); that is to say: 

P(M(t)=n) = ^e-^> »=0,1,2,... 

The different models of this type have a different function p(t), which is called the mean value 

function. The mean number of failures at time t is indeed /i(t), as is the variance. The Poisson 

process is chosen because in many ways it is the simplest point process yet it is flexible and has many 

useful properties that can be exploited. This second approach has become increasingly popular in recent 

years. M(t) can also be specified by its intensity function A(t), which is the derivative of n(t) with 

respect to t; either of these functions completely specify a particular Poisson process. One disadvantage 

of this approach is that it implies that there are conceptually an infinite number of bugs in the 

program, which is obviously impossible for code of a finite length. Another disadvantage is more 

subtle; the model implies a positive correlation between the number of failures in adjoining time 

intervals, a situation which is not true since again the total number of bugs has to be finite. 

Figure 1 is a flow-chart showing the above categorization of the statistical models. 
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Figure 1.  Categorization of Software Reliability Models. 
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3. Review of Some Software Reliability Models 

This section introduces some of the more well known probability models for software reliability. There 

are examples of models from each of the two main categories that were discussed in the previous 

section. Since the main purpose of the review is to describe the idea« and assumptions behind the 

models, technical details will be kept to a minimum in most cases. Those interested in the details of a 

particular model are advised to reference the papers where they were originally presented. 

Some common notation will be assumed throughout this section and is given below : 

i)   T-,       = i-th time between failure of the software [i.e.time between (i-l)th and i-th failure). 

ii)    r-r (t) s failure rate for T;, the i-th time between failure, at time t. 
i 

iii)    M(t)    = number of failures of the software in the time interval [0, t) (a Poisson process). 

iv)  A(t)      a intensity function of M(t). 

v)  p(t)      = expected number of failures of software in time (0,t). 

t 

=     A(s) ds  , since M(t) is a Poisson process. 

0 

10 models are presented. Model numbers 1 to 7 are of Type I-1, models 8 and 9 are of Type II and 

model 10 is of type 1-2. A common problem to all the models is the lack of data on which to test their 

validity; data on software reliability is commercially sensitive and so statisticians in academia have 

very little information on how software in the marketplace actually performs. For this reason it is 

important that the assumptions made in deriving these models are carefully thought about. 

1. The model of Jelinski tc Moranda (1972). 

This was the very first software reliability model that was proposed, and has formed the basis for many 

models developed after. It is a Type 1-1 model; it models times between failure by considering their 

failure rates. Jelinski and Moranda reasoned as follows. Suppose that the total number of bugs in the 

program is N, and suppose that each time the software fails, one bug is corrected. The failure rate of 

the i-th time between failure, Tj, is then assumed a constant proportional to N-i+l? which is the 

number of bugs remaining in the program. In other words 
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rT (t | N, A) = A (N-i+1), i=l, 2, 3, ..., t > 0,     for some constant A. 

There are some criticisms that one could make of the model. It assumes that each error contributes the 

same amount A to the failure rate, whereas in reality different bugs will have different effects. It also 

assumes that every time a fix is made, no new bugs are introduced: note [see Figure 2(i)j that the 

successive failure rates are indeed decreasing, A model like this is sometimes refered to as a "de- 

eutrophication model", because the process of removing bugs from software is akin to the removal of 

pollutants in rivers and lakes. 

2.   Bayesian Reliability Growth Model (Littlewood k Verail (1973)). 

Like the Jelinski k Moranda model, the model proposed by Littlewood and Verail looked at times 

between failure of the software. However, they did not develop the model by characterizing the failure 

rate; rather they stated that the model should not be based on fault content (as Jelinski k Moranda 

had assumed) and then declared that Ti has an exponential distribution with scale A;, and that Aj itself 

has a gamma distribution with shape a and scale #(i), for some function *. Despite this it is still 

considered to be a Type 1-1 model. 

Specifically : 

fT (t | A,) = A; e"Ai* t > 0 
i 

HA.(A | *,*(!)) =«*«-!«-• W A>0 
T(a) 

tf(i) was supposed to describe the quality of the programmer and the programming task. As an 

example, they chose »(ijs^+^i. One can show that this makes the failure rate of each Tj decreasing 

in t and that each time a bug is discovered and fixed there is a downward jump in the successive 

failure rates; see Figure 2(ii).  In fact 

rT.(t | a, ß0, ßx)  =?-f|_,fort>0. 

If ß{>l then the jumps in the failure rate decrease in i, if 0X<1 they increase whilst if ^=1 they 

remain a constant. So if ßx differs from 1 then the fixing of each bug is making a different contribution 

to the reduction in the failure rate of the software, an apparent advantage over the model by Jelinski lc 
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Moranda.  This  model  has received  quite a lot of attention and has  been  the subject of various 

modifications:   see models 6 and 7 later in this section. 

3. The De-eutrophication model of Moranda (1975). 

Another (de-eutrophication) model of Moranda (1975) attempted to answer some of the criticisms of 

the Jelinski k Moranda model, in particular the criticism concerning the equal effect that each bug in 

the code has on the failure rate. He hypothesized that the fixing of bugs that cause early failures in the 

system reduces the failure rate more than the fixing of bugs that occur later, because these early bugs 

are more likely to be the bigger ones. With this in mind, he proposed that the failure rate should 

remain constant for each T;, but that it should be made to decrease geometrically in i after each failure 

i.e. for constants D and k 

rT (t | D, k) = D klA t > 0, D>0 and 0<k<l. 

Compared to the Jelinski k Moranda model, where the drop in failure rate after each failure *M 

always A, the drop in failure rate here after the i-th failure is D Ic^l-k) see Figure 2(iii). The 

assumption of a perfect fix, with no introduction of new bugs during the fix, is retained. 

4. Imperfect Debugging Model (Goel k Okumoto (1978)). 

Thi« model is another generalization of the Jelinski k Moranda model which attempts to address the 

criticism that a perfect fix of a bug does not always occur. Goel k Okumoto's Imperfect Debrtgginf 

Model is like the Jelinski k Moranda model, but assumes that there is a probability p, 0 < p < It °f 

fixing a bug when it is encountered. This means that after i faults have been found, we expect ixp 

faults to have been corrected, instead of i. Thus the failure rate of Tj is 

rT(t|N, A, p) = A(N-p(i-D) 

When p=l we get the Jelinski k Moranda mode). 
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5. A. model by Schick k Wolverton (1978). 

This is yet another Type I model, and this time the failure rate is assumed proportional to the number 

o'f bugs remaining in the system and the time elapsed since the last failure. Thus 

rT(t | N, A) = A (N-i+l)t, t>0 
i 

This model differs from models 1-4 in that the failure rate doe» not decrease monotonically. 

Immediately after the i-th failure, the failure rate drops to 0, and then increases linearly with slope 

(N-i) until the (i-t-l)th failure:  see Figure 2(iv). 

6-   Bayesian Differential Debugging Model (Littlewood (1980)). 

This model can be considered as an elaboration of model 2 proposed by Littlewood k. Verall. Recall 

that in model 2 it was assumed that A;, the failure rate of the i-th time between failures, was declared 

to have a gamma distribution. In this new model Littlewood supposed that there were N bugs in the 

system (a return to the bug counting phenomenon), and then proposed that A; be specified as a 

function of the remaining bugs. In particular, he stated A; = ^ + ^3 + •■- + ^N.JI where fy were 

independent and identically distributed gamma random variables with shape a and scale 0. This 

implied that A; would have a gamma distribution with shape a(N-i) and scale 0. In other respects its 

assumptions are identical to the original Littlewood/Verail model. 

7.  Bayes Empirical Bayes or Hierarchical Model (Maxraebi k Soy« (1988)). 

In 1988 Mazzuchi and Soyer proposed a Bayea Empirical Bayes or Hierarchical extension to the 

Littlewood k Verall model (model 2). As with the original model, they assumed Tj to be exponentially 

distributed with scale A;. Then they proposed two ideas for describing A;, here called model A and 

model B. 

Model A : 

Still assume that Aj is described by a gamma distribution, but with parameters a and 0. Now assume 

that a and 0 are independent and that they themselves are described by probability distributions; a by 

a uniform and 0 by another gamma- In other words : 
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n.(A|a,^)=-^-AQ-le-iA, A>0 
•M r(o) 

x(a | v)     =     i , 0 < o < f 

T(0 I a, b) = J£L 3^1 e*b/?, /J > 0,  a>0.   b>0. 
I (a) 

Model B: 

Assume that A; is described exactly as in Littlewood and Verall i.e. 

and that *(i)=/30+^1i,  except now place probability distributions on a, ßQ and 3X as follows: 

»(«|«)ai 0 < or < w ■ 

*(ßQ | a, b, ßx) =  £L (ß^ß.r1 e^O+ßl) , ßQ > -ßv   a>0,   b>0 
l (a; 

So o is described by a uniform distribution, /3„ by a shifted gamma and ßy by another gamma, and 

there is dependence between ß0 and Bx. By assuming ßx to be degenerate at 0, model A is obtained 

from model B. The authors were able to find an approximation to the expectation of Ta+l given that 

Tt=tt, T2=t2, ...r Tn=tn, and so use their model to predict future reliability of the software in light of 

the previous failure times. 

8. Time-dependent Error Detection Model (God k Okotnnto (1979)). 

This is the first Type II model that we will consider. It assumes that M(t), the number of failure» of 

the software in time (0,t), is described by a Poisson process with intensity function given by 

A(t) = ab ebt 

where a is the total expected number of bugs in the system and b is the fault detection rate; see Figure 

2(v). Thus the expected number of failures to time t is : 
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M(t)=  [abe-bs ds = a(l - e"bt). 

0 

The {unction ft(t) completely specifies a particular Poisson process, and the distribution of M(t) is 

given by the well known formula 

P(M(t)=n) = M!f e-M 0=0,1,2,... 

Experience has shown that often the rate of faults in software increases Initially before eventually 

decreasing, and so in Goel (1983) the model was modified to account for this by letting 

A(t) = abc tc"1 e-btC 

where a is still the total number of bugs and b and c describe the quality of testing. 

9.  Logarithmic Poisson Execution Time Model (Musa and Okumoto (1984)). 

The Logarithmic Poisson Execution Timt Model of Musa and Okomuto is one of the more popular 

software failure models of recent years. It is a type II model, but the model is not derived by directly 

assuming some intensity function A(t), as was the case with model 8 of Goel k Okumoto. Here A(t) is 

expressed in terms of p(t), the expected number of failures in time (0,t), via the relationship 

A(t) = AQ ,'W 

Put simply, this relationship encapsulates the belief that the intensity (or rate) of failures at time t 

decreases exponentially with the number of failures experienced, and so bugs fixed, up to time t. The 

fixing of earlier failures will reduce A(t) more than the fixing of later ones. Since we are modeling the 

number of failures by a Poisson process, then we have another relationship between A(t) and /i(t), 

namely 

t 

p(t)= jA(s)ds  . 
0 

Using these two relationships between A(t) and ft(t), there is a unique solution for the two functions: 
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Figure 2 (vi) shows a plot of A(t) versus t;   it is similar to the plot of figure 2 (v) except that the tail is 

thicker. 

It now follows from the above that by using  P(M(t)=n) =  (p(t))V^ltyn! we can say 

P(M(t)=n)    =    L_L2    ' , n=0,1.2.... 
6n (Ao0t+l);vx n! 

As a final remark, we mention that in their paper the authors go into some detail on estimation of \Q 

and 6 by maximum likelihood methods; however, one of the likelihoods appears to be incorrect. 

10,   Random Coefficient Autoregresaive process model (Singpuxwalla k Soyer (1985)). 

This is a Type 1-2 model, that is one that does not consider the failure rate of times between failure. 

Instead it assumes that there is some pattern between successive failure times and that this pattern can 

be described by a functional relationship between them. The authors declare this relationship to be of 

the form 

Ti - T;./*        ,       i=l,2,3,... 

where T0 is the time to the first failure and 0; is some unknown coefficient. If all the tffs are bigger 

than 1 then we expect successive lifelengths to increase, and if all the 0;'s are smaller than 1 we expect 

successive lifelengths to decrease. 

Uncertainty in the above relationship is expressed via an error term S-t, so that 

The authors then make the following assumptions, which greatly facilitate the analysis of this model. 

They assume the Tfs to be lognormally distributed, that is to say that log Tj's have a normal 

distribution, and that they are all scaled so that T{ > 1. The 6{s are also assumed to be lognormal, 

with median 1 and variance «? (the conventional notation is Afl,^2)). Then by taking logs on the 

relationship above they obtain 
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log Tj = Ö; log Tj.! + log S{ 

= *i log T^ + «j    , say. 

Since the T;'s and the 6{s ate lognormal so the log Tj's and the f;'s (= log 6;'s) will be normally 

distributed, and in particular et has mean 0 and some variance <r2 (the conventional notation is 

K(Q1a )). The log-lifelengths therefore form what is known as an autoregressive process of order I with 

random coefficients 0;. There is an extensive literature on such processes which can now be used on this 

model. 

All that remains to do is to specify d-t, and the authors consider several alternative models. For 

example, one could make 9t itself an autoregressive process : 

0j = adUl+ uj; where w; is X(0, W;) with W; known. 

When a is known, the expressions for log T; and 0. together form a Kaiman filier model, on which 

there is also an extensive literature. When a is not known the solution is via an adaptive Kaiman filter 

algorithm for which the above authors propose an approach. As an alternative to the above, one could 

place a two stage distribution on 0;, and the authors considered the idea of 0; being -M"(A, cr2 ), with A 

also a normal random variable having mean TOQ and variance s0
z. In this latter case one can employ 

standard hierarchical Bayeaian inference techniques to predict future reliability in the light of previous 

failure data. 

Figure 2 shows the various failure rates for models I. 2, 3 and 5. and the intensity function for models 

8 and 9. 
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Figure 2 (iii) The failure rate of the model of Moranda 
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Figure 2 (vi) The intensity function for the model of Mm and Okumoto 
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4. Model Unification. 

By adopting a Bayesian approach, it turns out that one can unify models 1, 2 and 8 - the models by 

Jelinski k Moranda, Littlewood k Verrall and Goel k Okomuto respectively - under a general 

framework. Observe that this also provides a link between the two types of models, since models 1 and 

2 are of type I whilst model 8 is of type II. 

We begin by recalling the first model, that by Jelinski k Moranda. Each T; is assumed to have a 

constant failure rate A(N-i+l). It is well known that this implies each Ts must therefore be 

exponentially distributed with mean (^(N-i+l))"1. Now assume that A and/or N is unknown; in true 

Bayesian fashion prior distributions are placed upon them. 

To obtain model 8 by Goel k Okomuto. we let A be degenerate at A and N have a Poisson distribution 

with mean 0. One can calculate M(t) using the Tfs as defined by Jelinski k Moranda. and then by 

averaging out over N one finds that M(t) is indeed a Poisson process with mean : 

/i(t) = 8 (l-e"At) 

which is the form of p(l) for Goel k Okomuto's model. 

One can also obtain model 2 by assuming N to be degenerate and A to have a gamma distribution. 

The derivations which lead to the above are complex; readers are referred to Langberg and 

Singpurwalla (1985) for the details. 
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5. An application : optimal testing of software. 

The failure model» that have been reviewed in the preceding sections can be used for more than 

inference or the prediction of software failure. They can also be applied in the framework of decision 

theory to solve decision problems. An important example of such a problem is the optimal time to test 

software before releasing it. This involves the balancing of the costs of testing and the risk of software 

obsolesence with the cost of in-service failure, should a bug not be corrected during the testing period. 

The following is taken from Singpurwalla (1991), in which a strongly Bayesian approach is taken. 

To implement a decision theoretic procedure requires two key ingredients. The first is a probability 

model, and here we take a generalization of the Jelinski k Moranda model. The second is a 

consideration of the costs and benefits, or utilities, associated with a particular decision i.e the costs of 

testing, the benefits and costs of fixing a bug etc. Decision theory states that the optimal decision (in 

this case time of test) is that which maximizes expected utility. 

If the software is to be tested for some time, say T units, and then released the problem is to find a T 

that maximizes expected utility. This is called single stage testing. There is a more complex, yet 

realistic, scenario called fins stage testing. Here the software is tested for T units of time, and then 

depending on how many failures M(T) were observed during that test, a decision is made on whether to 

continue testing for a further T* units. The problem here is to find the optimal T and T", with T* to 

be determined before M(T) is observed. Finally there is a third testing scenario, namely sequential 

testing. Here T* is determined after M(T) is observed; this procedure can continue for several stages, 

with T** being determined after M(T*) is observed and so on. Here we consider the ease of single stage 

testing. Figure 3 is a graph of the decision process associated with single stage testing. 

UM(T.M(T).j) 

Figure 3 Decision process for angle-stage toting 
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The model chosen in this paper is an extension to Jelinaki k Moranda's model. We have 

fT (t | N, A) = A(N-i+l) e~A(N*i+l)t t > 0 
i 

In the previous section we placed prior distributions on one of N or A. Now we place priors on both the 

parameters, and say That N has a Poisson distribution with mean 9. A has a gamma distribution with 

scale ß and shape a and that N and A are independent. 

We now turn to the choice of utility function. The following assumptions are made : 

i) The utility of a program that encounters j bugs during its operation is ax4- a^e   ■*•. 

ii) The cost of fixing a bug is some constant Cv 

iii) Let f(T) be the cost of testing and lost opportunity to time t; here we say f(T) = dT" 

Note from i) that the utility of a bug-free program is at+ «4, and the utility of a program with a very 

large number of bugs is near at, so that typically ax is a large negative number (because there is a 

great loss associated with software that is constantly failing in the marketplace) and a^O. Combining 

these assumptions gives us the utility of a program that is tested for T units of time, during which 

M(T) bug« are found and corrected, and then released where j bugs are encountered by the customer a* 

<U(T, M(T), j) = ebTx {ai+ a, e"*^ - CtM(T) - dT*} 

where e       is some devaluating factor. 

Now the two parts of the decision process - the probability model and the utility function - are brought 

together. We wish to find the time T that maximizes expected utility. In other words find t such that 

E(<U(T, M(T), j)) is a maximum, where we take expectation, using our failure model, with respect to 

M(T) and j. Thi» maximi2ation is quite complex, and must be done numerically via computer. The 

details are found in the paper, but the end result is best displayed as a graph of time against expected 

utility (figure 4); in this case one can see that the time one should test the software for is about 3.5 

units. 
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Figure 4 Urne of testing versos expected utility for the model in Section 5 
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6.  Conclusion. 

This paper has attempted to review the main methods, and some of the more well known models, that 

have been used by the statistics community in the area of software reliability. The first models were 

almost always baaed on looking at the failure rate of the software: later on the idea of modeling 

number of failures by a Poisson process was used and then most recently auto-regressive processes have 

been suggested as an alternative to the failure rate method. Application of the failure models, such as 

to the optimal testing decision problem, is another important aspect to the field. 

Earlier it was pointed out that there is almost no dato on the reliability of commercial software, due to 

the sensitive nature of that information. A possible method of overcoming this problem would be to 

have more interaction between the statistics and computer science communities. In the future, such 

interaction seems essential if models are to become more realistic and useful, and it is perhaps 

surprising that there are so few links between the two groups today. 

There still remains much to be researched in this field. In the case of optimal testing, plans for two- 

stage and sequential testing need to be developed, whilst the verification of current and future models 

is likely to remain a problem. Nevertheless, because of the increasing presence of computers in all 

aspects of our daily lives, the topic of software reliability can only become more important in the 

future. 
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ABSTRACT. THE SECOND AUTHOR OF THIS POSTER PRESENTATION IS UNDER 
CONTRACT WITH THE DEPARTMENT OF VETERAN AFFAIRS TO PROVIDE VOCATIONAL 
AND EDUCATIONAL COUNSELING TO ARMY MILITARY PERSONNEL WHO WILL BE 
LEAVING MILITARY SERVICE IN A SHORT TIME. THIS PARTICULAR COUNSELING 
SERVICE IS PROVIDED PRIMARILY TO THE INFANTRY BRANCH STATIONED AT 
FORT BENNING, GEORGIA. EACH SOLDIER IS GIVEN A BATTERY OF TESTS; 
APPTITUDE, ABILITY. INTERESTS, CAREER DEVELOPMENT AND PERSONALITY. 
THESE INSTRUMENTS COLLECTIVELY PROVIDE INFORMATION TO ASSIST THE 
COUNSELOR IN PROVIDING INDIVIDUAL GUIDANCE. THIS POSTER SESSION DID 
NOT FOCUS ON THE SCIENCE AND DECISION MAKING PROCESS OF INDIVIDUAL 
COUNSELING BUT EXAMINED AND SHOWED SOME OF THE RELATIONSHIPS THAT 
EXIST BETWEEN THE DIFFERENT PSYCHOMETRIC INSTRUMENTS. THESE 
STATISTICAL RELATIONSHIPS CAN BE USED TO GAIN INSIGHTS AND TO MAKE 
DECISIONS ABOUT THE VETERANS AS A GROUP AND TO PROVIDE THE VOCATIONAL 
COUNSELING COMMUNITY INFORMATION ABOUT THE VALIDITY OF THE 
INSTRUMENTS. BASIC STATISTICAL METHODS WERE USED TO ANALYZE THESE 
DATA. THE RESULTS OF FACTOR ANALYSIS WERE ESPECIALLY USEFUL FOR 
PROVIDING INSIGHTS A80UT THE STRUCTURAL RELATIONSHIPS THAT EXIST 
BETWEEN THE DIFFERENT SCALES AND INSTRUMENTS. IN MANY CASES THE 
GRAPHICAL DISPLAYS SHOWED THAT THE TEST BATTERY CONSISTS OF A SET OF 
MUTUALLY SUPPORTING INSTRUMENTS. 

THIS PAPER WILL ACCOMPANY THE POSTER PRESENTATION WHICH IS INCLOSED. 
THE READER SHOULD CONSIDER THE ABSTRACT (GIVEN ABOVE) AND EACH OF THE 
NINE POSTER DISPLAYS IN ORDER TO UNDERSTAND THE CONTENTS OF THE 
POSTER PRESENTATION. IF THERE ARE ANY QUESTIONS REGARDING 
INTERPRETATION OF THE POSTER DISPLAYS, PLEASE CALL THE FIRST AUTHOR 
AT (706)545-3163/3166 OR DSN 545-3165/3166. EACH POSTER DISPLAY WILL 
BE DISCUSSED IN ORDER. 

POSTER DISPLAY 1. THIS DISPLAY SHOULD BE SELF-EXPLANATORY. NOTE THE 
PRIORITIES OF THE THREE GOALS. THE INDIVIDUAL SOLDIER COMES FIRST. 

POSTER DISPLAY 2. THE SUBJECTS ARE DESCRIBED AS A GROUP. 

POSTER DISPLAY 3. THIS IS A LISTING OF THE PSYCHOMETRIC TESTS 
(INSTRUMENTS) THAT WERE ADMINISTERED TO EACH SUBJECT / SOLDIER AS 
PART OF THE COUNSELING PROCEDURE. THIS DISPLAY TAKES TWO VIEWGRAPHS. 

POSTER DISPLAY 4. THIS IS A SUMMARY OF THE RESPONSES OBTAINED FROM 
THE INVENTORY CALLED "MY VOCATIONAL SITUATION" (THE SECOND INSTRUMENT 
LISTED ON POSTER DISPLAY 3). THE ITEMS MARKED WITH AN "*" APE THOSE 
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RESPONSES THAT RESPONDENTS MARKED EITHER TRUE OR YES AT LEAST 507. OF 
THE TIME ( LEVEL OF SIGNIFICANCE OF 5'/. ). THIS WAS A SUBJECTIVE 
CRITERION FOR FOCUSING SOME CONCERN FOR THE COUNSELING PROCESS FOR 
THE SUBJECTS AS A GROUP. THE NEED TO FOLLOW UP THESE SIGNIFICANT 
RESPONSES WITHIN THE ARMY SYSTEM IS EXPRESSED AT THE BOTTOM OF THIS 
POSTER DISPLAY. 

POSTER DISPLAY 5. THIS DISPLAY GIVES EXAMPLES OF THE CORRELATIONS AND 
SCATTER PLOTS BETWEEN SOME OF THE INSTRUMENTS AND SUB-SCALES LISTED 
ON POSTER DISPLAY 3. THE TOP FIGURE SHOWS THE PLOT BETWEEN 
INTELLEGENCE AND ABSTRACT REASONING (R=.9) AND THE BOTTOM FIGURE IS 
THE PLOT BETWEEN-EXTRAVERSION AND INTROVERSION (R=-.92). THESE 
PARTICULAR RELATIONSHIPS WERE EXPECTED AND DESIRED FOR VALID 
MEASUREMENTS OF THESE PSYCHOLOGICAL DIMENSIONS. THE CORRELATIONS 
BETWEEN ALL THE SCALES ARE EXPLORED FURTHER IN POSTER DISPLAYS 6,7 
AND 8. 

POSTER DISPLAY 6. THIS IS THE COMPLETE CORRELATION MATRIX FOR ALL 
TWENTY SCALES EVALUATED FOR EACH SUBJECT. THIS MATRIX WAS PREPARED 
FOR INPUT TO A FACTOR ANALYSIS ROUTINE. 

POSTER DISPLAY 7. THIS GIVES SOME INTERPRETATIONS OF THE FACTOR 
ANALYSIS. THIS DISPLAY IS INTENDED TO BE SELF-EXPLANATORY. THE SIX 
FACTORS THAT WERE EXTRACTED ARE DESCRIBED/INTERPRETED ON THE NEXT 
DISPLAY. 

POSTER DISPLAY 8. THE FACTOR LOADINGS FOR ALL TWENTY SCALES ARE GIVEN 
HERE. THESE ARE CLASSICAL TEXT-BOOK RESULTS. THE LOADINGS ARE "AS 
EXPECTED" FOR ALL SIX FACTORS. IN A SENSE THIS CAN BE INTERPRETED AS 
HELPING TO CONFIRM THE VALIDITY OF EACH INSTRUMENT AND SUB-SCALE FOR 
USE IN COUNSELING THE TARGET GROUP OF SUBJECTS. 

POSTER DISPLAY 9. THIS SUMMARY DISPLAY WRAPS UP THE MAJOR FINDINGS 
SHOWN AND DISCUSSED IN THE PREVIOUS VIEWGRAPHS. 
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POSTER DISPLAY A 

INFORMATION ABOUT THE VOCATIONAL NEEDS OF THE SOLDIER 

my vocational situation 

CductfW compin«! Other 

LM at Ihe ocaaMUons you art eonwdtnno rt^e no- 

Try to ameer «art» of ihe (aawrirej MMfltafU ax mowly TTMJE or moHly 
FAL££. Cvcle aw *m«w *we be« reprejant» your prcMiM opinion. 

h «Mire) «BOUJ yew preientjsp or ti pkmano far an orcupiOon or car««: 
A   I.   llMditBiuniMlliMMdiAerlaY 
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A NEED TO FOLLOW UP THE 'SIGNIFICANT RESPONSES" OF CONCERN: 

• HELPING SOLDIERS MAKE CAREER DECISIONS 

• EXPLAINING THE CAREER OPTIONS 

• INFORMATION ABOUT OPPORTUNITIES AND TRAINING 
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POSTER DISPLAY 6 

Correlations: V40 
tJlftl** 

-r371^t» 
V38 ^b^         .7402*« 
V39   " o4»?.+«B«i .8959** 
V40 1.0000** 
V41 IVJC/M  ,.6232*« 
V42 . Phtti*r    -5656** 
V43 rr*sw>tj!   .6742** 
V44 /W/J,rvr1/..6B25** 
V45 -.0128 
V46 .0488 
V47 -.2561* 
V48 .1978 
V49 .1140 
V50 -.0665, 
V51 -.1128 
V52 .0767 

PLOT OF V39 WITH V40 

7.7 

V 
3 
9 

12 

,54 
-9 

Z 
2 
J 

254 
3 
J 
J 
J 

.54 

J 
3 
3 

211 

11 
2  331111 
11 1 

111 12 
22 1 111 

1314132  2 
1112  1 
1311 

1 11 

1 
111 

12 

J 
C 

3 
C 
3 
J 
3 
3 
C 
3 
3 
3 
3 

90      102       11*      126 
84       96      108       120 

V40 

•rrel ationsi V45 
!<*+/■« 4. ■*»* CIO* 

V36 -.1477 
V37 -.0392 
V38 -.0560 
V39 -.0261 
V40 -.0128 
V41 .0752 
V42 .0032 
V43 .0305 
V44 .0859 
V45 1.0000** 
V46 ifUT/v#w*<;>r) LT.9232*« 
V47 -.2569* 
V48 .2282 
V49 -.0574 
V50 .0693 
V51 .2671* 
VS2 -.2110 

PLOT OF V46 WITH V45 
ZADDDDADDDDADDDDADDDDADDDDADDDDADDDDADD" 
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<§&DDDD8DDDDBDDDDBDDE>DBDDDD8DDDDBDDDD&DDr 
4.5      13.5     22.5     31.5 

0        9       18       27 
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3 3 1 
3 2 2 

204 21 22 1 
3 11 4 1 
3 263 
3 12  111 1 
3 12 1 33211 
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DISPLAY POSTER 6 

CORRELATION MATRIX FOR ALL SCALES 

INPUT TO THE FACTOR ANALYSIS 

        FACTOR 

Analysis Number     1     Matrix   input 

ANALYSIS 

Corre: ation Hatrixi 
AWC«. SOWN» £*««***< e,u «f*!*«c VHSAL fit&tMJ 

XI X2 X3 X4 XS X6 X7 

XI 1.00000 
X2 .4700O 1.00000 
X3 .38000 .46000 1.00000 
X4 .43000 .34000 .62000   1 .00000 
xs .38000 .21OO0 ' .42000 .67000 1.00000 
X6 .26000 .11000 -.04000 .06000 .09000   1 .00000 
X7 .24000 . 080O0 .09000 . UOOO .08000 .3600© t.OOOOO 
xe .31000 .14000 .08000 .13000 .08000 .74000 ,90000 
X9 .13000 .09000 -.03000 .21000 .23000 .62000 .58000 
xio .29000 .08000 .01000 .01000 -.03000 .44000 .340O0 
Xll .19000 .04000 -.03000 .01000 .OSOOO .53000 .61000 
X12 .29000 .09000 -.02000 .10000 -.03000 .64000 .63000 
X13 . 170O0 .22000 .40000 , 44000 .22000 .06000 -.03000 
X14 -.24000 -.19000 -.44000 .49000 -.31000 .11000 .07000 
xis -.32OO0 -.36000 -.18000 .13000 .16000 .21000 -.18000 

F'Aga 4 SPSS/PC* 7/17/92 

X16 
X17 
XIS 
X19 
X20 

xe 
X9 
xio 
Xll 
X12 
XI? 
X14 
X15 
X16 
X17 

XI 

FACTOR 

X2 

ANALYSIS 

X5 X6 X7 

,29000 .390O0 . 16000 .16000 -.15000 .25000 .03000 
.03000 .08000 -.09000 .04000 .09000 .12000 .13000 
.12000 -.07000 . 10000 .02000 .04000 -.06000 .09000 
.030OO .04000 .34000 .14O0O .2SOOO -.17000 .04000 
.01000 -.03000 -.23000 -.03000 -.16000 .04000 .01000 

hwitHim MAM» SP#IAI. Mi^UKAL H*t*M»«>L fylUMMl u/MMHtl 

xe X9 XIO XI 1 X12 X13 X14 

1.00000 
.62000 1.00000 
.37000 .ssooo l.OOOOO 
.67000 .64000 . 680O0 1.00000 
.68000 .62000 .52000 .56000 1.00000 

-.01000 .OSOOO .01000 .03000 .09000 1.00000 

.OSOOO -.04000 .01000 -.01000 .04000 -.92000   1 .00000 

-.260OO -.05000 -.25000 -.17O00 -.16000 -.26000 .22000 

.20000 .07000 .20OOO . 13000 .13000 .23000 .17000 

.llOOO .17000 .14000 .16000 .09000 -.06000 .11000 

Pag© 

X18 
X19 
X20 

xe 

-.07000 
-.11000 

.08000 

X15 

SPSS/PC* 

FACTOR        ANALYSIS  

X9       XIO       XU X12 

-.07000   -.08000   -.13000 -.03000 
.01000    .02000    .02000 -.07000 
-.01000   -.01000   -.04000 .01000 

IWTUT»»"          TMiJIw*           FS"-'*'* T.«4-l*» 
X16                  XI7                  X18 X19 

X13 

7/17/92 

X14 

-.07000 -.11000 
.26000 -.27000 

-.21000 .19000 

X20 

XIS 
Xlfc 
X17 
xie 
X19 
xro 

1.00000 
-.83000 

.05000 
-.03000 

.26000 
-.24000 

l.OOOOO 
-.05000 

.10000 
-.27000 

.22000 

.00000 

.70000 
,12000 
.10000 

1.00000 
-. UOOO 

.12000 
1.00000 
-.90000 1.00000 
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POSTER DISPLAY 7 

INTERPRETATION OF THE FACTOR ANALYSIS 

1. CORRELATION MATRIX INPUT 
20 VARIABLES;  XI TO X20 
N=87 CASES 
43 PAIRWISE CORRELATIONS GREATER THAN .30 

2. BARTLETT TEST OF SPHERICITY INDICATES THAT THE CORRELATION MATRIX 
IS NOT AN IDENTITY MATRIX. FAVORABLE FOR FACTOR ANALYSIS. 

3. THE KAISER-MEYER-OLKIN MEASURE OF SAMPLIMG ADEQUACY (.63) IS A 
MEDIOCRE VALUE. ANOTHER MEASURE OF SAMPLING ADEQUACY IS SOMEWHAT 
FAVORABLE TO FACTOR ANALYSIS. 

4. BASED ON AN EIGENVALUE CRITERION OF "AT LEAST ONE" AND THE SCREE 
PLOT, THERE ARE SIX FACTORS INVOLVED WITH THESE VARIABLES. A 
VARIMAX ROTATION WAS SELECTED. THE FINAL FACTOR STATISTICS ARE 
PRESENTED BELOWI 

tor Eigenvalue Pet of Var Cum Pet 

1 5.16778 25.8 25.8 
2 3.62840 18. 1 44.0 
3 2.S6355 12.8 56.8 
4 1.62856 8.1 64.9 
5 1.44906 7.2 72.2 
6 1.16989 5.8 78.0 

FACTOR   ANALYSIS 

S.168   +     * 

E 
I 
6 
E 
N 
V 
A 
L 
U 
E 
S 

3.628   ♦ 

2.564   «• 

1.449  + 
1.170   + 

.585 + 

.293 + 

.000   +- 
-1_ 

■+- 

JL- .6. 

- + - 
7. 

-+- 
.a Q     in     11      \">     It     Ifl     l^     1A.1.-2.  IP     l9-7ft- 
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POSTER DISPLAY 8 

6.   ffl^TBfil  1   (  AUL * LSA8JN@gV 
X8....INTELLEGENCE, SHIPLEY 
X7....ABSTRACT, SHIPLEY 
X11...NUMERICAL SKILLS, CAREER PLANNING PROGRAM 
XI2...MECHANICAL REASONING, CAREER PLANNING PROGRAM 
X9....READING, CAREER PLANNING PROGRAM 
X6....VERBAL, SHIPLEY 
XIO...SPATIAL, CAREER PLANNING PROGRAM 

COMMENT: THIS FACTOR ACCOUNTS FOR BOTH THE SHIPLEY AND THE 
CAREER PLANNING MEASURES. THIS IS PROBABLY INTELLEGENCE. 
INDICATES CONSTRUCT VALIDITY. 

FACTOR 2 < ALL + LOADINGS) 
X5....CONVENTIONAL, SELF DIRECTED SEARCH 
X4 ENTERPRISING, SELF DIRECTED SEARCH 
X3. ;.. SOCIAL," SELF DIRECTED SEARCH 
XI....INVESTIGATIVE, SELF DIRECTED SEARCH 

COMMENT: ALL LOAD ON THE SAME INSTRUMENT WHICH CLAIMS TO 
DETERMINE INTERESTS. INDICATES CONSTRUCT VALIDITY. 

FACTOR 3 
X15...SENSING(ORDERLY), (-), INTRODUCTION TO TYPE 
X16...INTUITION, < + ), INTRODUCTION TO TYPE 
X2 ARTISTIC, < + >, SELF DIRECTED SEARCH 

COMMENT« LOADED POSITIVELY ON ARTISTIC AND INTUITION AND NEGATIVELY 
ON THE ORDERLY TYPE. THIS MEETS A PERCEIVED IMAGE OF THE 
ARTISTIC TYPE OF PERSONALITY. CONSTRUCT VALIDITY. 

FACTOR 4 
X13...EXTRAVERSION, (+), INTRODUCTION TO TYPE 
X14...INTROVERSION, <->, INTRODUCTION TO TYPE 

COMMENT» THESE TWO LOADINGS ARE STRONGLY CORRELATED (NEGATIVE) 
CALL IT A FACTOR OF EXTRAVERSION. CONSTRUCT VALIDITY. 

FACTOR S 
X20...PERCEIVING, (-), INTRODUCTION TO TYPE 
X19...JUDGING, <♦>, INTRODUCTION TO TYPE 

COMMENT« SAME COMMENTS AS FACTOR 4 ABOVE. CALL IT A FACTOR OF 
JUDGING. CONSTRUCT VALIDITY. 

FACTOR 6 
X18...FEELING, <-), INTRODUCTION TO TYPE 
X17...THINKING, <♦), INTRODUCTION TO TYPE 

COMMENT: SAME COMMENTS AS FACTOR 4 ABOVE. CALL IT A FACTOR OF 
THINKING. CONSTRUCT VALIDITY. 
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The MDL Principle - A Tutorial 

J. Rissanen 

IBM Almaden Research Center, San Jose, Ca 95120-6099 

Abstract: The MDL (Minimum Description Length) principle is meant to provide 

guidance to inductive inference and modeling by posing them literally as data com- 

pression problems. It is seen to be a direct generalization of the Least Squares and 

the Maximum Likelihood techniques as well as the Maximum Entropy principle. It 

also provides a concrete code length based interpretation of the priors in Bayesian 

inference, and it permits their optimization in the light of the data. Finally, the 

shortest code length generalizes Shannon's information by inclusion of a term that 

accounts for the effect of estimation. A basic result in the MDL theory generalizes 

Shannon's fundamental noiseless coding theorem and sets bounds to the main data 

processing tasks of data compression, estimation, and prediction. 

.1. INFERENCE PRINCIPLES 

Inductive inference is the familiar process aimed at extrapolating general laws 

from a given set of data generated by some physical machinery or, as put by 

Maxwell, it is the process for finding the 'go" of it. This, of course, is also the 

way to learn from experience, for since in general the current data will not occur 

exactly in the future it is the summary information represented by the laws that we 

can learn. After all, the storage and recalling capacities of the brain would rapidly 

be overwhelmed if we tried to store all the data we perceive. Despite the common 

belief in a mystical 'true' law, which obviously is a mathematical and hence lin- 
guistic concept, there is no unique way to construct such an extrapolation. What 

is even worse, it is impossible to formalize the induction problem with a perfect 

inference scheme as the solution.   Indeed, the definitive manifestation of a found 
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law is that, it would predict optimally the future observations. But this would make 

the law dependent on future data, which we do not have today, and because any law 

we find must be determined by the given current data, we arrive at a contradiction. 

Squeezed between such conflicting demands we must settle for less and ask merely 

for a principle to select an extrapolation law, or perhaps less ambitiously a model of 

the data generating machinery, which has intuitive appeal and, more importantly, 

which provides good models and model classes for new and nontrivial problems. 

The key requirement here is that the principle, or the model selection criterion, 

should have a meaningful data dependent interpretation. A further bonus would be 

if the principle could be proved to have various desirable mathematically defined 

properties in the cases where analysis is possible. 

In this paper we study the MDL (Minimum Description Length) principle for 

model selection. Expressed in broad terms, the principle calls for that model class 

or model, as the case may be, with which the observed data can be encoded with the 

fewest number of binary digits. In this, it is important that the optimal model itself 

needed to do the job is also included. Despite such a 'nonstatisticaP enunciation 

of the principle, it actually is a direct extension of the line of the most important 

inference principles of them all, beginning with the idea of the least squares by 

Johan Lambert over 200 years ago. It was recast by Gauss as maximization of 

the distribution bearing his name, and it was developed into the general but still 

'local' Maximum Likelihood principle by Fisher. In fact, the code length defines a 

probability somewhat analogously to the way the squared deviations define a normal 

distribution, and the MDL principle can equally well be called a 'global' Maximum 

Likelihood principle to emphasize the fact that any two models or model classes 

may be compared, regardless of their type and the number of parameters in them. 

The MDL principle is also related to but is distinct from Bayesian inference, 

which at least in its original form is based upon Bayes' theorem. This theorem trans- 

forms an initial distribution on the parameters, assumed to express prior knowledge 

about the 'true' parameter value, in the light of the observed data into the more 

informative posterior distribution. This, in turn, can either be used for estimation 
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of the 'true' parameter value or to optimize a suitable risk function of the future 

performance and to make intelligent decisions. The weak spot in this in itself sensi- 

ble reasoning is the controversial initial 'prior' distribution, its meaning and choice, 

as well as the extent to which the nebulous 'prior knowledge' can be expressed as 

a distribution on parameters which themselves are artifacts in more or less arbi- 

trarily chosen models. In the MDL formalism anything that can be described in 

a finite number of distinct symbols, which certainly includes parameters and data, 

will get a code length induced probability, which then will be the concrete meaning 

of probabilities on parameters. But more importantly, the MDL principle imposes 

a restriction on the prior probabilities, which permits their optimization without 

paradoxes and hence makes the dream of the Bayesians, the so-called empirical data 

fitted priors, come true. The restriction comes from the simple requirement that 

since an object, say the integer n ~ 3729, cannot be described in a prefix manner 

(see Appendix) with fewer than about log n + 2 log log n, or 20 bits, using commonly 

agreed ways of encoding, it is impossible in the MDL framework to assign to this 

number a prior probability larger than about 2-20. To put it differently, a Bayesian 

might have on good authority the piece of prior information that the probability of 

the given integer is 1/2, and there is nothing in the Bayesian inference contradicting 

this belief. This would allow encoding of the integer with log 2 = 1 bit. However, 

in the MDL framework this information must be described to others, which means 

that about 20 bits are required to describe the special integer which has such a 

high probability as 1/2, and nothing is gained. The point here is that in the MDL 

formalism description of objects should be done by universally available means us- 

ing a natural language and conventional mathematics. If special means are desired, 

they must be explained; ie, redescnbed, in the generally available terms. This has 

first the implication that different objects require different amounts of bits to de- 
scribe them, which is determined by the way languages, including mathematics, 

are formed. In fact, that is how we distinguish between simple and complex things. 

Further, the nature of prior knowledge in this framework is something that is shared 

and generally known, which is in contrast with 'private' prior knowledge that some 

Bayesians subscribe to. We may, of course, still use special prior knowledge about 

the type of models we wish to fit to a particular set of data, knowledge generated 
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by others who may have studied a similar problem and which is riot in the data we 

have. But such knowledge should not compete with the evidence; ie, the data, and 

if it does the data win! After all, in this game prior knowledge is supposed to help 

in explaining the existing data, rather than imagined nonexisting 'future' data. 

Another but still partial view of the MDL principle is to regard it as some 

sort of a practical implementation of the ideas in the theory of algorithmic or Kol- 

mogorov complexity, Solomonoff (1964), Kolmogorov (1965), and others. Indeed, if 

we regard a program with which a universal computer can generate the observed 

data, represented as a binary string, as its model, then the shortest program may 

be taken as the best model of the data. Although nonunique such a program must 

represent all the regular features in the string that on the whole can be expressed in 

the programming language for the machine, which clearly is the paramount require- 

ment of a model. The unique length of the shortest programs for the string is called 

the Kolmogorov complexity of the string, and with the restriction that no program, 

regarded as a binary string, is a prefix of another, Chaitin (1975), the complexity 

defines a sort of universal prior distribution for the integers. Since parameters, trun- 

cated to a finite precision, may easily be encoded as integers, the central problem 

nagging the Bayesians seems to get solved, see Li and Vitanyi (1992). The fly in the 

ointment, however, is that the Kolmogorov complexity is not computable, except 

by approximations from above without our being able to form an adequate idea of 

the error. What is worse, the universal prior cannot even be approximated from 

either side, except if left unnormalized (the sum differing from unity), and despite 

the asymptotic universality properties of such an unnormalized 'prior', the hardly 

surprising conclusion is that it does not provide any help in tackling the inductive 

inference problems arising in practice. 

How well does the MDL principle satisfy the above stated goals of intuitive 

appeal, utility, and analytic tests? Perhaps because of the intuitive idea of a model 

to be a short summary of the data, and the general feeling that redundancy is 

something to be avoided, many people find the code length minimization appealing 

- even those who are not familiar with coding theory.   However, there are others 
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who are not convinced and frequently raise questions like 'Why is the code length 

criterion any good for selecting models, unless the application of the model is for 

data compression?'. Moreover, since the objective is to get a model that performs 

well in future data, rather than being able to compress the current data, one wonders 

why we shouldn't minimize an expected value of some such desired quantity as the 

prediction error. We dispose first of the second type of criterion, which actually 

forms the very foundation on which traditional statistics is erected. The required 

expectation presupposes the existence of a 'true' and unique underlying distribution 

so that the expected quantity, say the quadratic error, can be approximated from 

its samples by the appropriate estimation procedure for such a distribution. In 

other words, the real criterion that gets minimized will be a function of the current 

data, determined by the particular estimation procedure. The trouble is that this 

procedure and hence the result depend on the assumed 'true' distribution, which 

is anything but unique. For example, if we fit a polynomial curve to a set of data 

pairs and measure the error by the quadratic deviations, we are implicitly assuming 

a gaussian distribution with the mean denned by a polynomial of unknown degree. 

The higher the degree we pick the better fit we get; ie, the smaller the estimated 

mean square error, which is absurd. 

A widely accepted guidance to avoid such absurdities is obtainable by analysis. 

Provided that there is a 'true' distribution generating the data, it is in some cases 

possible to deduce that the estimated mean performance, such as the mean pre- 

diction error, has both a bias and variance. Since the former gets smaller and the 

latter increases as the number of parameters increases we may seek a compromise 

by minimizing an appropriately weighted sum of the two effects. While adding the 

variance into the picture prevents models of extreme complexity from being opti- 

mal, the assumption of a 'true' distribution is untenable and deprives the criterion 

any data dependent interpretation. For the same reason, the choice of the degree 

of the compromise must be left for judgement, which means that we no longer have 

a rational basis to prefer one model over another, in particular when they are of 

different type having different numbers of parameters. The inevitable conclusion is 

that we cannot replace an intuitively appealing data dependent criterion by an esti- 
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mate of a dreamed 'ideal' criterion and hope to overcome the fundamental dilemma 

in inductive reasoning. In the MDL criterion the role of 'bias' and variance are 

played by the code lengths for the data and the model, the former getting smaller 

and the latter growing with an increasing number of parameters, so that the MDL 

principle strikes an automatic balance between the two terms without any arbitrary 

weighting factors. 

We return to the first question, the intuitive appeal of the code length criterion 

to be minimized. We already mentioned its equivalent interpretation as a global 

maximum likelihood principle, which to us seeras as the single most powerful way 

to assess goodness of models. It is easy to visualize a model with a highly peaked 

distribution, centered on the current data, as being able to provide a good predictor 

with few surprises, while in contrast a flat distribution constrains the data only 

weakly with plenty of room for deviations from any predicted behavior. In fact, we 

know of only two data dependent criteria, the prediction errors and the code length 

or, equivalently, probability, and they both will be optimized.by the MDL model; 

see Rissanen (1984) and Weinberger et al (1992). 

The chapter on the utility of the MDL criterion is, of course, not closed. What 

we can report is a steadily growing number of nontrivial successful applications, 

some of which are discussed in Gao and Li (1988), Hannan and Rissanen (1988), 

Leclerc (1989), Quinlan and Rivest (1989), Rissanen and Ristad (1992), Sheinvald 

et al (1992), Wax and Ziskind (1989), Dengler (1990), Rao et al (1991). ::< addition, 

the majority of the most successful order determination criteria for regr .n and 

time series problems discussed in the literature actually admit a code length inter- 

pretation. Finally as to the provable properties, all the versions of the MDL criteria 

have been shown to provide consistent estimates of the number of parameters as 

well as of their values in the usual analyzable model classes, Gerencser (1989), Han- 

nan et al (1989), Hemerly and Davis (1989), Yu (1990). In the particular case of 

the linear least squares problems, the predictive MDL estimates extend the classical 

optimality properties of the unbiased least squares estimates to the estimation of 

the number of parameters as well as to the optimality of the mean accumulated 
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prediction errors, Rissanen (1986b), and others. 

To conclude this introductory section we mention a conceptually important 

contribution of the marriage between the algorithmic and stochastic complexity 

theories. It is the fact that if the model classes we wish to contemplate include all 

the computable models, then there is no algorithm that will produce the MDL model 

as the output, when the observed data sequence is given as the input. This means 

that while the code length yardstick does permit comparison of any two models, we 

cannot form by computable means an assessment of how close to the optimal any 

model we have found is. This is the fundamental obstacle in all statistical work, 

which no amount of hypothesis testing nor anything else can overcome. On the 

positive side, however, this is the only fundamental obstacle; we can at least tackle 

the others, such as the estimation of the shortest code length, relative to a complex 

model class, which, to be sure, can be difficult enough. But, we feel, it is better to 

know one's 'enemy' rather than to be oblivious to it. 

2. CODING WITH MODEL CLASSES 

As one can argue, Rissanen (1989), virtually all models can be taken as prob- 

ability distributions for the data of the two types, P{xn\0) or P(yn\xn, 0), where 

xn = xi,..., xn and yn = yi,--,yn denote the data sets of any kinds of 'symbols' 

and 9 = 9l;. .., 6k denotes the parameters of any kind and number k. Usually, the 

parameter values range over the real line while the data symbols range over a finite 

or a countable set. A few clarifying points might be in order to substantiate the 

made sweeping statement. First, by models in this context we mean the models 

that we actually fit to the data, rather than some mathematical abstractions such 

as those defined by ordinary or partial differential equations. These, of course, can 

be highly useful in suggesting good models of the kind we end up fitting to the 

data. Secondly, the distributional models may have any number of mathematical 

equalities and relations as parts; indeed, the probabilities involved often refer to 

the deviations from the deterministic 'laws' defining the model of interest, and, in 
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fact, they may get defined by the way the deviations are measured. The reason why 

we cannot separate such deviations at the outset as 'noise' is that they obviously 

get defined by whatever deterministic behavior we have selected to represent the 

model. Clearly, we may wish to apply our prior knowledge and model the 'noise', 

say the measurement errors, knowing the properties of the instrument, differently 

from the 'smooth' signal, but all this is included in the above formulation. Such a 

formulation of the notion of a model, which may appear to some as too vague, is 

just a testimony of the tremendous generality of the MDL principle and the ideas 

involved. 

The central question which must be dealt with in order to make the MDL 

principle to work in applications is how to estimate the shortest code length with 

which the data can be encoded when a class of models is given. For this we need the 

basic results of Shannon's coding theory, see the appendix. They may be summa- 

rized by the single statement that the best way to encode data x", obtained from 

a single distribution ~P(xn) by sampling, is to design a code such that this data set 

gets encoded with - log P(xn) binary digits. Clearly, since the code length must be 

integer-valued we can achieve the ideal to within one bit. We ignore the difference 

and call the quantity -\ogP{xn), usually called the (self) information, the ideal 

code length for the string xn under the stipulated conditions. Hence, we conclude 

already now that we can replace the knowledge of the 'true' distribution by the best 

code for the data - provided we know how to design it! Indeed, if under the agreed 

conditions we have been able to construct the shortest code, its length L(x") for 

the data also defines the largest probability 2"L(:r") we have managed to assign to 

them, and hence it provides the best model of the above stated distributional kind. 

Assume then that a set of models Mk = {P(*n\0, <*)} is selected for the data. 

The parameter a is an integer-valued index, or a set of them, while 9 = 0i,.. -, 0k 

consists of components, which range over various subsets of the real numbers. To 

keep things simple we ignore the parameter a, which anyway usually requires an 

order of magnitude fewer bits than the real-valued parameters 6. These, to be sure, 

themselves are truncated in order to admit encoding with a finite code length. The 
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number of parameters k in 9 is often itself variable to be determined optimally, 

In such a case the model class of interest is M = \JkMk- Notice that even the 

so-called nonparametric models are actually included; after all, when fitting such 

models we end up fitting a lot of parameters, sometimes even of the order of n. 

There are three basic ways to encode data relative to the model class Mk, 

each of which has its advantages and disadvantages. After all, encoding data in 

such circumstances does not admit such a clear-cut solution as given by Shannon's 

theory. We outline all three methods. 

2.1. Two-Part Coding 

We begin with the most general method, the so-called two-part coding, which 

is intuitive and often simple to apply. Each parameter value 9 specifies a dis- 

tribution, which by Shannon's work permits encoding of the data with about 

L(xn\6) = -logP(xn\$) bits. However, decoding can only be done if the decoder 

knows the parameter value which the encoder used. Hence, we need a preamble in 

the total code to specify the chosen parameter. And since we are not allowed to use 

a comma to separate the preamble from the rest, the code for the parameters must 

be a prefix code, see the appendix. It is clear that to encode the parameters by a 

finite binary string they must be truncated to a finite precision. If we take the pre- 

cision the same S - 2_? for all of them, we can represent 0< with the largest integer 

multiple of the precision, not exceeding 0,, written as [(6i2q). Hence, the number of 

bits needed for each parameter is about log(|0i|29). Actually, because of the prefix 

requirement, a few more bits are needed, however, not more than 21oglog(|0,'|2<?) 

bits, (see Appendix), which we ignore as well as the sign bit for the parameter and 

the code length for the integer q itself. We then can encode the data with about 

it 

I(x"|<Mfc) = min{-logP(x"|2-n(|ö|2,)) + ^ + y;iog(|^|)}, (2.1) 
'■' i=i 

where we wrote |.(|0|2?) as the vector of the components |.(|0i|29).  Notice that an 

increase of the value of q increases the second term kq but reduces the first in the 
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worst case, when the truncated parameter deviates maximally from the unrestricted 

minimizing value 9. Hence, there is an optimum worst case precision which can be 

found numerically. In particular, the second and the third terms may be defined to 

be the optimal model complexity 

k 

L(e,q\Mk) = kq + J2hg(\0i\), (2-2) 

which is seen to depend on the amount of data. The criterion (2.1) may be further 

minimized over the number of the parameters k to get the optimal model as well as 

its complexity in the larger class M = {JkMk- 

By expanding (2.1) into Taylor's series about the minimizing parameter value, 

the optimal precision 6 is seen to behave asymptotically as l/y/n, which gives the 

optimal asymptotic code length approximately as 

L{xn\Mk) = -logP(xn|0) + ^logn, (2.3) 

derived in Rissanen (1978) and by different arguments in Schwarz (1978). 

The criterion (2.1) may be interpreted as the Bayesian posterior maximization 

principle. Indeed, let L(9,q) denote the prefix code length needed to describe the 

parameters, truncated to the precision 8 = 2"«. Then ir(9s) = 2'L^'q) defines 

a prior for the truncated parameters, and (2.1) is equivalent to maximizing the 

posterior probability P(9, q\xn, Mk) over 9 and q. However, this does not mean that 

the maximum posterior principle is equivalent even with this particular application 

of the MDL principle. The reason is that the criterion (2.1) is only an approximation 

to the shortest code length, even if ignore the approximations made in getting 

L{9, q) which could be removed by starting with a prior ir{96) and taking L(0,q) = 

-logff(öÄ). The MDL principle calls for the shortest code length for the data xn, 

only, given the class Mk, for which (2.1) gives an upper bound. The reason why 

this is so is that with each parameter value 9 we can encode all the data, which 

means redundancy. To remove it, let Xg be the set of all strings of length n which 
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the maximum likelihood estimator 9(xn) maps to the value 9. The sets Xg are 

disjoint, and the data string has the probability P(xn\9(xn))r(9(xn))/P{X^xtt)), 

which with optimal truncation on the parameters gives a shorter code length than 

(2.1). 

2.2. Predictive Coding 

Suppose we do the coding sequentially as follows: First, order the data set 

in any manner, unless already done, say as zi < xj < ... < xt < ... < xn. 

Then, subdivide the sequence into consecutive blocks of length d, except possibly 

the last, the parameter d to be optimized. To start the procedure, encode the 

numbers x\)..., xj in the first segment any way agreed with the decoder, say by 

adjoining to the model class a special distribution P(xn\X), where A represents the 

empty parameter. Then, recursively, let 9{xid) denote a suitable estimate, often 

the maximum likelihood one, determined from the first i segments, and encode the 

numbers xt in the next, the i + lst segment, with help of the conditional distribution 

P(it+i|*t,Ö(a;i''))I which can be calculated from the members of the model class. 

Indeed, P{xt+i\xl, 9) = P(zt+1|0)//VI*)- The optimal code length for the data is 

then to a good approximation given by 

min{(i + l)d-l,n-l} 

PMDL{xn\Mk) = mm{-^2 £ logP^+il*', 0(x,d)) -I- logrf}, 
i>0 t=id 

(2.4) 

where 9{x°) = X. Notice that in this predictive code length criterion there is no 

need to explicitly tell the decoder any parameter values, because they are calculated 

recursively by an algorithm assumed to be known to him. Neither is there any 

particular precision needed since the parameters may be calculated to the machine 

precision. 

This model selection criterion does not even need a code length interpretation 

for its justification, because instead of the code lengths -logP^t+ilx',^"*)) we 

could just as well have used some prediction error, such as the squared distance 
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(xt+i —Xt+iiOix1)))2, resulting from use of a parametric predictor. This in fact was 

the way the principle was discovered independently in Dawid (1984), and it was 

called the 'prequential' principle. The predictive coding is generally very efficient. 

It is really based upon the sensible expectation that the future behaves as the 

past. Indeed, if that fails so does everything else! On the negative side, in some 

applications the ordering requirement of the data imposes a restriction. Again, 

an arbitrary ordering, in particular for small samples, does affect the criterion. 

Paradoxically, in some cases, where the prediction error measure is so weak that 

prediction can be done without knowledge of the entire model, minimization of 

the predictive criterion does not lead to optimal prediction! An example is the 

loss function for discrete data, say for binary strings, where a mistake incurs a 

unit penalty while a correct prediction incurs none. An optimal prediction can be 

obtained by using the code length criterion to find the optimal model and then 

using it as the predictor; for an analysis, see Weinberger et al (1993). 

2.3. Mixture Coding 

For the third and the final coding technique we discuss it is necessary to com- 

plement the model class with a distribution x{6), which traditionally is called a 

'prior'. For us it is just an additional part of the model class which we shall take 

advantage of to shorten the code length for the data. It actually can be computed 

from the likelihood function and certainly need not be interpreted as representing 

prior knowledge. For the present purposes, however, we take it as given. With the 

so enlarged model class Mk = {P(xn\9), TT)} define 

I{xn\Mk) = -\o$P(xn\Mk), (2-5) 

where 

P(xn\Mk)= [f\zn\6M8)d6. (2.6) 

A code designed with the code lengths (2.5) is very efficient, for one can show, 

Rissanen (1987), that (2.5) is strictly smaller than (2.1) for large enough n, which is 
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a reflection of the redundancy discussed in Subsection 2.1. However, the integration 

requirement restricts the applications of the criterion (2.5) to the few but important 

special distributions where the integral can be evaluated. These are the distributions 

with the so-called conjugate priors, and they include the gaussian, the multinomial, 

and the Wishart distributions. The conjugate priors have typically additional so- 

called nuisance parameters, which can be determined by minimizing the sum of (2.5) 

and the code length needed to encode these parameters, again truncated optimally. 

It is curious that the distribution (2.6) has been well-known to the Bayesians, who 

call it the 'predictive' distribution. However, it was apparently not applied as a 

model selection criterion until in Rissanen (1987), where the current code length 

interpretation was given, and, in fact, where (2.5) was defined to be the stochastic 

complexity. 

In a recent talk, given in a Machine Learning Workshop at the University of 

Pennsylvania, Prof. Breiman described among other things predictors, defined by a 

convex linear combination of a family of other predictors. He had found empirically 

that such mixture predictors generally perform very well, better than anyone of the 

component predictors. We show now that the goodness of the mixture predictor is a 

simple consequence of the above stated fact that (2.5) is strictly smaller than (2.1) 

for a finite or countable mixture, or to put it the other way, that the mixture 

probability or density is strictly larger than any of the terms in the sum. To 

be specific, consider the regression problem, where we construct a model of the 

data (yn,x") = (t/i,^),..., (y„,x„). Here, x, is a high dimensional vector of the 

regressor variables xu, z2i, - • •, xKi and j/,- is the response variable. Next, consider 

the mixture density model 

W|xn) = X>/(yn|xV), 
i 

where the coefficients c{ are positive with sum unity, and f(yn\xn,i) denotes the 

ith model, obtained by putting f{yn\xn, i) = lit /(»«l^t» 0- Each factor is a model 

obtained, for instance, by taking f{yt]xt, i) as normal with some variance <rj and the 

mean given by some predictor <^(xt) of yt. It is clear that /(yn|xn) is strictly larger 
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than any term Cif(yn\xn,i), including the largest. Since in any successful mixture 

the coefficients of the largest densities certainly must not be the smallest, the con- 

centration of the mixture probability mass is at or near the observed sample. In fact, 

in the regression case it can be shown that the mixture density approaches the data 

generating density, when one is assumed to exist, at the fastest possible rate. Hence, 

it follows that its conditional mean gives a predictor i?[yn|Xn] = £c,-£'[y'n|Xn
I i], 

which in effect is unbeatable. Since we tacitly assumed independence we also have 

4>{lt)5E\Yt\Xt) = jTeiM*t), 

which explains the empirical findings of Breiman. 

3. Universal Modeling 

Traditional estimation theory goes as follows: Fit a given number of parameters 

to a sample xi,...,xn by an estimation procedure, called estimator, to give the 

estimated parameters 6(xn) and the model P(y\9(xn)). This model, then, may be 

applied to new data y of any size. For analysis purposes one often assumes the new 

samples to arrive independently from the old, and the behavior of the estimated 

model, such as the resulting mean prediction error, may be studied. Similarly, the 

variance of the estimated parameters may be analyzed. A quite extensive theory of 

this type exists. 

There is, however, another way to look at the estimation problem, one which 

opens up a different vista. For this, we first add one further requirement to the 

models in the class of interest, namely, that each defines a random process. This is 

done by imposing for each model the condition 

^2P(xi,...,xt,x\e) = P(xl,...1xt\0) (3.1) 
x 

for all t. Here we used the same letter P to denote a distribution for any number 

of arguments. Such a condition is clearly necessary for the models to be any good 
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in describing the behavior of future data that we on the whole can learn. Now, 

an estimated model P(y\xn, 9(xn)) from the existing data xn should be used only 

to infer the behavior of the very next data item y, labeled xt+\.. This is because 

once this item has been seen, we should clearly take advantage of the additional 

information it provides to obtain a better model, and so on. But since we know 

that condition (3.1) is necessary to infer the behavior of xt+i from the past xn 

our modeling procedure actually should describe a random process P(xn). We 

deliberately omit including parameter estimates 9(xn) in this process, because it 

may not use any! Clearly, the procedure that describes the random process should 

be independent of the data, which means that it should provide a good model of 

whatever machinery generates the data. In particular, for the purposes of analysis, 

where we often assume that the data are samples from some process, the modeled 

random process should mimic the actual data generating process, whatever it is. In 

other words, the modeled process should have the universality property that it is 

capable of imitating the behavior of any data generating process in the considered 

family. Clearly, for that to be possible the modeled process itself cannot belong to 

the family. The three central questions that then arise are whether such universal 

processes exist at all, and if yes how well the imitation can take place, perhaps, 

in an asymptotic sense, and finally whether we actually can construct an optimal 

universal process. In a very real sense the construction of an optimal universal 

process settles the modeling problem: Use the process for all the modeling tasks 

such as prediction, decision, or control, just as if it were the 'true' data generating 

process. 

A number of results have been proved during the recent years which shed 

light to these questions, Rissanen (1984), (1986a), (1986b), Hannan et al (1989), 

Gerencser (1989), Hemerly and Davis (1989), Yu (1990). An explicit and efficient 

construction of a universal process for the class of Markov chains of finite order can 

be done with the algorithm Context, Rissanen (1983b), (1993), Furlan (1989). A 

related one was proved to be asymptotically optimal in Weinberger et al (1993). As 

an illustration, we give one such result. 
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Theorem 2.1. Consider a dais of models M = \Jk Mk, where Mt, = {f(xn\&)}, 

the parameter 6 ranging over a compact subset Vk of Rk with nonempty interior. 

Let P(xn\6) satisfy the marginality condition (3.1) and be smooth enough to admit 

an estimator 8{xn) which satisfies the central limit theorem. Then (i) for any 

distribution P(xn) satisfying (3.1) 

Im g'^i;;,l/f",ffi > 1 (3-2) n —co (fc/2)logn 

for all k and 9 in Tk, except in a null set. The expectation is taken with respect to the 

distribution P(xn\9). Moreover, (ii) there exists a distribution P*(xn), satisfying 

(3.1), for which (3.2) holds with equality. 

To put the theorem slightly differently and less formally, there is a universal 

random process P*(xn) such that the ideal code length it defines satisfies 

no matter which process P(xn\8) generates the sequences. Moreover, for all intents 

and purposes no distribution can do better. Finally, one may even drop the ex- 

pectation operations, and the result holds essentially for all sequences generated by 

the data generating process. When k = 0 we get in essence Shannon's theorem. 

Finally, a corollary of this theorem provides a tight lower bound for the mean square 

prediction error, Rissanen (1984). 

We conclude this section by describing briefly a modification of the algorithm 

Context, which implements a universal process for time series of the type just dis- 
cussed. In broad terms the idea is to construct recursively in i, as the data xt are 

obtained, a state space, its partition, and a process of the type 

xt = F(*t_i,...,xt-*) + ct, (3-3) 

where k may depend on the past string a:'"1 and is to be optimized. Begin by 

truncating each observation xt, for simplicity, to a binary number xt, called a symbol 

The algorithm grows a binary tree by the rules: 
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1. Start with the one-node tree T0 with its two symbol occurrence counts initial- 

ized to 0. 

2. Recursively, having constructed the tree % from x', climb the tree along the 

path it,xt-i,..- into the past. For each node s visited, update the count of the 

symbol x~t+i by one: 

ct+i(xt+i\s) = ct(xt+i\s) + 1. 

3. If the last updated count for the node, say xt,xt-i,... ,£*-*, becomes at least 2, 

extend the tree by the node xt, «t-i, • • •, x<-jt, ict-ife-i, and initialize its symbol 

counts to zero, except the count for the symbol Xt+i, which is set to 1. This 

gives the tree T<+1. 

While growing the tree the algorithm also fits an AR model to the past occur- 

rences of the original full precision numbers at each node s, to give the predictors 

xt+i = a0(t, s) + oi(<, s)xt + ... + ar{t, s)xt-r+i, (3-4) 

where the order r is optimized by the MDL principle. In particular, it is not 

restricted to be less than or equal to the depth of the node. The coefficients a,-(<, s) 

will be functions of the past occurrences of observations, say Ct(s), in the node 

s, which clearly defines an equivalence class. With these we may then calculate 

the sum of the 'honest' prediction errors Lt{s) = J2rect(a)(xr - *r{s))2 from the 

occurrences of the past symbols in this node. These are used to find the optimal node 

s* for the symbol xt+i by minimization over the nodes along the path xt, Xt-i,  

The predictors (3.4) define a process of type (3.3) if we put 

xt+i = xt+l(st) + et+i- (3-5) 

Since the depth of the optimal node may well be smallc. than the order of the AR 

model in this node; the resulting representation is smoother than piecewise linear, 

even though only linear fits are being calculated. 

4. EXAMPLES 
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We illustrate the MDL principle with two simple examples. 

Example 1. We applied the algorithm Context to the data of length 500 generated 

by the following nonlinear AR system, 

x(t + 1) = ax(i - l)|x(*)|1/2 + ßx{t)\x{t - 2)\1 + e(t), t = 0,..., n - 1,      (4.1) 

where e(t) was obtained as follows: First, a gaussian sample sequence with zero 

mean and unit variance was generated. Then the positive outcomes were multiplied 

by three, and the sequence was centered by subtracting the sample arithmetic mean 

from all the numbers. The intent was to have something else than symmetric 

gaussian noise. The three parameters had the values a = — .5, ß — .15, and 7 = 1.55, 

which brought the system near its stability boundary. The three initial values 

needed were x(0) = x(-l) = x(~-2) = 0. The sample variance of the noise and the 

output data was 4.25 and 6.18, respectively. 

We first fitted linear AR models. The best PMDL determined order was 2 with 

the predictive variance a2
AR = 5.72, which at the same time served as the value of 

the predictive MDL criterion. Algorithm Context, in turn, gave the substantially 

smaller value ar2cx - 5.30. Hence, by the MDL principle we should prefer the 

nonlinear model delivered by Algorithm Context. To see whether the principle 

is reliable, we then took the best linear AR model and applied it to predict the 

values in a new sample of length 500 generated by the same system (4.1) using the 

corresponding linear predictor. The result was the per symbol squared prediction 

error PEAR ~ 5.39. We then predicted the same sample with the best model found 

by Algorithm Context with the substantially smaller result PECx = 485, just as 
could have been anticipated by the values of the predictive criterion calculated from 

the first sample. 

* 
Example 2. Table 1 shows a two-way contingency table, where the entries n,j 

indicate the observed cell occurrences of the pair (x,-,y>) of attribute values in a 

sequence (a;, y) of length n. For example, in Kendall and Stuart (1961, page 552) the 

influence of the feeding habits of children to the nature of their teeth was studied, 
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where (zi,j/i) means breast feeding and normal teeth, (11,2/2) breast feeding and 

abnormal teeth, (x2,y\) bottle feeding and normal teeth, and (x2, J/2) bottle feeding 

and abnormal teeth. 

(*>y) 2/1 yi Totals 

Xi nu "12 nx. 

X2 "21 "22 «2 

Totals n.i n_2 n 

Table 1. A two-way contingency table 

The most frequently tested hypotheses in such a table are whether the two 

attributes are independent or not. Both hypotheses are modeled by a distribution in 

which the cell occurrences take place with probabilities pti, which act as parameters, 

and the cell occurrences are independent so that the probability of the string is the 

product of the cell probabilities. The null-hypothesis is represented by the model 

class Mo, which states that the four cell probabilities satisfy the independence 

condition of being given by the product of the marginal probabilities p,;- = Pipj- 

Each parametric distribution in the model class is then the product of two Bernoulli 

distributions, one for the columns and the other for the rows in the table. Taking 

the uniform prior for each we get from (2.5) 

I(x, y\Mo) = log 
n 

Mi. 

n 
n.i 

+ 2 log 
n + 1 

n 
(4.2) 

The alternative hypothesis is represented by the model class Mi, defined by the 

distributions with three free parameters pijyi,j - 1,2, which satisfy only the con- 

straints that they are non-negative and add up to unity. Again with the uniform 

prior in the range of the free parameters, we get 

T{x,y\Mi) -log 
n 

+ log 
n + 3 

n 
(4-3) 
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By the MDL principle the winning hypothesis; ie, model class, is the one which 

gives the shorter code length for the data string (x, y). Because of the type of 

model classes chosen, the probabilities assigned to the string by the models in each 

class depend only on the occurrence counts in Table 1, and we can readily calculate 

the code length difference 

I{x, y\M0) - I(x\Mi) = log ;—;—j—j log —,,■       ,—, 
ni.!n2.!n.1!n.2' o!(n + l) 

which serves as a universal test statistic T(x, y). With the numerical values nn = 4, 

n12 = 16 n2i = 1, and n22 = 21 we get T(x,y) = 0.056, and the independence 

hypothesis is narrowly rejected. We see that our test is like the traditional test, and 

the non-negative random variable defined by the first term in T(x, y) is matched 

with the positive threshold, defined by the second term. The ratio in the first term 

is a uniform- most powerful unbiased test statistic, Kendall and Stuart (1961, 

Section 34.24), which, evidently, is equivalent with our test statistic. This is not 

an accident; it holds whenever such test statistics exist, which clearly provides a 

powerful support to the reasonableness of our utterly simple testing procedure. 

Due to the smallness of the test statistic we would expect our confidence in 

rejecting the null-hypothesis to be low. How to form a realistic measure of this 

confidence? We have argued in Rissanen (1989) that the very best way to assess 

the confidence would be to repeatedly gather samples like Table 1, generated by 

the same 'physical machinery' with which this table was obtained; ie, to have more 

data, and then do the test again and again. The distribution of the test statistic 

would give us the probability of our having made a mistake. However, in most 
cases this is not possible, and we would like to do the next best thing, which is 

to model the physical machinery and sample that. Clearly, the goodness of the 

results depends critically on our ability to construct a good model of the physical 

machinery so that the new data were statistically similar to the actually observed 
sample. But the entire purpose of the MDL principle is to get best models of 

data, and in this instance we must take the optimal model in the non-independent 

model class Mi as the one with which to generate the new data.   We generated 
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200 repetitions of samples of si2le 42 with the model defined by the cell probabilities 

pn = 4/42, pl2 = 16/42, p2i = 1/42, and p22 = 21/42. The null hypothesis was 

accepted with probability 0.46, which, indeed is close to a toss-up, indicating very 

small confidence on our test result. 

The described procedure is clearly similar to Effron's bootstrap, except for 
our requirement that the new data be generated with the best model we can find. 

Indeed, without this requirement we see no justification for the technique. In fact, 

even so all we can assess is the uncertainty due to sample fluctuations relative to the 

chosen model. The other source of uncertainty, that due to the lack of our model 
not being perfect or even optimal, will always remain beyond reach. As we discussed 

in Section 1, this, indeed, is the ultimate uncertainty in all model building, because 

the issue of finding the optimal model from data is undecidable. We should add that 

in all but simple cases this second source of uncertainty is the dominant one, and 

the accurately calculated confidence intervals provide a false sense of confidence. 

Appendix 

Let A denote a finite or countable set called an alphabet. Its elements are 

called .symbols, which we frequently in the case of a finite alphabet identify with the 

first d + 1 integers 0,1,..., d. Write An for the set of all strings of length n and 

A*- U^Lo An for tileir union. For convenience, the first power A0 consists of the 
empty string, written as A. In information theory a finite string x — oi,..., an e A* 

of symbols is called a message, but we prefer the name data string or sequence. 

A code C is a one-to-one map from A* into B*, the set of all finite binary strings. 

Nothing essential is lost by restricting th*<> code alphabet to be binary, which for 

our purposes is all that is needed. A simple example is a code defined for the three- 

symbol alphabet A = {a,b,c} as follows: C{a) = 0, C{b) = 10, C{c) = 11. This 

is extended to strings by replacing the symbols by their corresponding codewords 

thus: C{aabac) = 0010011. Notice that with this particular code you will be able to 
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decode any binary string without commas separating the successive codewords. This 

is possible because the code defines a binary subtree where the leaves correspond tö 

the three codewords, and no extension of a codeword can define another codeword. 

When each codeword is a leaf, the code is called a prefix code, or it is said to have 

the prefix property. Such a property is not only desirable for the sake of easy and 

'instantaneous' decoding, but it implies the fundamental Kraft inequality for the 

code lengths 

£V^<1 (Al) 

for a finite or even countable alphabet, where the code length L(x) is the number 

of digits in the codeword C{x). The equality holds if and only if the tree, defined by 

the codewords, is complete in the sense that there is no leaf which is not a codeword, 

in which case the code is called a complete prefix code. An easy proof of (A.l) is 

done by induction on the number of leaves. 

Suppose next that we are given d +1 positive integers n0,...,nd satisfying the 

Kraft-inequality 
d 

and we ask whether it is possible to construct a prefix code for the alphabet 

{0,..., d} with lengths defined by these integers. The answer, of course, is yes. 

All we need to do is to sort the integers by increasing size, and construct the code 

tree as follows: Assign to the first codeword the left-most leaf 0 ... 0 of path length 

given by the smallest integer. Continue by assigning to the next codeword the next 

left-most available leaf of length defined by the second smallest integer (which, of 
course, may be the same as the smallest), and so on. The Kraft-inequality guar- 

antees that there always will be enough nos," s for the codewords, regardless of the 

alphabet size. Clearly, this is not the only code with the given lengths. 

We see in (A.l) that a prefix code defines a distribution via P(x) = K2~L(-X\ 

where K = 1/ £  2~L(-y) is the normalizing coefficient needed in case the code is 
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not complete. Conversely, if we have a distribution defined on a finite or countable 

set, we can construct a prefix code such that its codeword lengths coincide with the 

integers ("—log P(as)l, where \y] denotes the smallest integer upper bound to the 

number y. Hence, to within the normalization a prefix code and a distribution are 

equivalent. Since any finitely describable object; ie, an object that can be associated 

with a finite string over a finite alphabet, can surely be encoded with a codeword 

of a prefix code, we can also talk about the so-defined probability of the object. 

Further, since it does not make any difference whether we encode 'random' data or 

'nonrandom' parameters, we have a uniform interpretation of probabilities in terms 

of the code lengths, which is in contrast with the Bayesian philosophy, where the 

interpretation of probabilities for the parameters poses grave difficulties calling for 
'subjective' or other nonscientific means. As a practical matter, it is sometimes 

far easier to contemplate concrete codes for objects, frequently parameters about 

which no repeated data are available, and calculate their code lengths than to select 

more or less arbitrary distributions as 'priors' for them. For example, we may wish 

to talk about polygons on a plane. It is easy to visualize how to encode each by 

encoding the position of its nodes. Compare this with the task of selecting a 'prior' 

distribution for the set of all polygons! 

We next establish a link between the code length and entropy by proving the 

first fundamental theorem in information theory, usually credited to Shannon but 

also sometimes referred to as Gibbs' inequality. 

Theorem Al. Let 5 be a finite or countable set, and let P and Q be two distri- 

butions on 5. Then 

(0 - £ P(x) log (?(*)>-£ P(x) log P(x) s H(X). 

Moreover, the equality holds if and only if 

(it) Q(x) = P{x) 

for every x. Here, 0 logO = 0. 
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Proof. By Jensen's inequality, 

the equality (ii) holding as claimed, because the logarithm is strictly concave. 

Since each prefix code length function L(x) defines the distribution Q(x) = 

2"i(l)/£j, 2~L(-"\ Theorem 1 gives 

J2 P{z)L{x) > H{X) + log J2 *~m > H(X)> 
x£S y 

so that the entropy is a lower bound for any mean prefix code length, which by (ii) is 

reached only when the code lengths reflect the data generating distribution. Often 

the set S is taken as the set An of all strings of some length n over an alphabet A, 

which is either finite or countable. Moreover, the probability function Pn{x
n) is in 

addition required to satisfy the compatibility condition 

£P„+i(*"*HP„(»B) (4-2) 

for all strings xn - n,..., xn, where xnz = arlf..., xn, z. Such a family of distri- 

butions {Pn(z")}, also written more simply as a function P{x) on ^4* = \JnA
n, 

defines a random process or an information source. Indeed, such a condition is nec- 

essary for a model to be useful, because it permits the definition of the conditional 

probability P(z\xn) = Pn+i(xnz)/Pn(x
n), and hence it provides a link from the 

past into the future. 

Notice that the code length -logP(x) given by (ii) of Theorem Al is optimal 

only in the sense of the mean, rather than for each individual outcome x. However, 

for large n the set 5 = An is very large, and just as in long series of flips of a fair 

coin the ratio of the heads to the total number of throws is close to 1/2 in virtually 

all of them, the overwhelming majority of the strings xn generated by the source 
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are such that -logP(a:n) « nH(X). The reason for this is fundamentally the fact 

about binary trees that the overwhelming majority of the nodes lie near the leaves. 

Therefore, if we design a code such that it assigns the length - logP(a:n) to the 

particular data string a;", we know that it takes a near miracle to find a shorter 

code for this string, or to put it the other way, the string xn, generated by the given 

source, would have to be an exceptional one for us to be able to encode it with a 

shorter code length than 

L(xn) = -hgP(xn), 

which justifiably is also called the ideal code length. The word 'ideal' also frees us 

from the petty requirement that a code length must be an integer. 

We conclude this appendix with a brief discussion of how to encode objects, 

which can be represented as integers, in a prefix manner when no distribution is 

given for them. Such a code, then, by the Kraft inequality defines a distribution with 

a certain asymptotically optimal universality property, Rissanen (1983a). First, a 

binary representation of the integer n has about log n digits. But if such a binary 

string was followed by other binary symbols we would not be able to read off that 

integer, because we would not know the length of the binary representation of n. To 

remedy the situation we could attach a preamble telling the required length, which 

requires about log log n binary digits. Iterating this, we attach further preambles 

telling the length of the length etc until the shortest preamble is reached. We 

don't really need the exact code, described in detail in Elias (1975), but only the 

fact that the total number of digits required to encode n in a prefix manner is 

about log* n = logn + log log n + ..., where the sum includes only positive terms. 
This induces a distribution P*{n) = c2-loe*n, where the normalizing constant is 

between 2 and 4. Depending on the size of the integers to be encoded, we may 

approximate log* n by the lower bound logn, which coincides with the nonprefix 

code length resulting from Jeffreys' improper prior 1/n, or by the upper bound 

log n 4- 2 log log n, which of course is a prefix code length. 
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Abstract 

Consider the mixed model 

Yijk = xj$ + bij + e,-,t, 

where i = 1,..., /, j = 1,..., m,-, k = 1,..., n,;-, and the mutually in- 
dependent random variables 6,-; — N(0, a\) and eyt ~ N(0, <r*) denote 
between-batch and within-batch components of variance, respectively. 
Based on data {Yiji}, we will show how to determine approximate 
one-sided confidence limits on any quantile of the population of the 
random variable 

ff~N(«?«,ff? + cri), 

where w is an arbitrary known vector. 
Lower confidence limits on lower tail quantiles of a population of 

material strength measurements are routinely used to characterize the 
strength of a material, particularly in aircraft design. Composite ma- 
terials typically exhibit considerable between-batch variability, so that 
the methodology discussed in this article could have important applica- 
tions. For example, if three batches of five specimens each are tested at 
each of four temperatures, and it is desiied to determine as a function 
of ttmpentun a lower confidence limit on the tenth percentile of the 
population corresponding to the strength of a specimen chosen at ran- 
dom from a randomly selected batch, then the proposed methodology 
could be applied. 
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1    Introduction 

In structural design, an allowable stress, working stress, or design al- 
lowable for a material is the maximum stress at which one can be rea- 
sonably certain that failure will not occur. For the design of structures 
for which weight is not a primary consideration, allowables are typically 
calculated by dividing a stress level at which failure is known to often 
occur by a sufficiently large constant called a safety factor (e.g., Gere 
and Timoshenko, 1984, p.29). The structure is then designed so as to 
ensure that the stresses do not exceed the allowables for the materials. 

This approach is too conservative for most aircraft applications, 
however. Since weight is an important consideration in aircraft design, 
this industry long ago established two one-sided tolerance limits to 
supplement the use of safety factors in determining allowables. These 
tolerance limits axe a 95% lower confidence limit on the tenth percentile 
and a 95% lower confidence limit on the first percentile of the strength 
distribution of a material. These are referred to as 'B-basis' and 'A- 
basis' values, respectively (Mil Handbook 5E, 1987; Mil Handbook 17C, 
1992). 

Composite materials are being used increasingly often in aircraft. 
These materials can provide the strength and stiifness of metallic com- 
ponents at substantially less weight. Composite material strength can 
vary from batch to batch, and tolerance limits based on pooled data 
can be dangerously optimistic. Consequently, procedures for tolerance 
limits in the presence of between-batch variability are of considerable 
importance in aircraft design. 

The literature on random-effects tolerance limits is largely confined 
to the one-way balanced ANOVA model (Mee and Owen, 1983; Vangel 
1992). Although an understanding of this simple model has been an 
important first step, it is necessary to make progress toward general 
methodology which can cope with unbalanced designs and covariates. 
This article takes a step in this direction, by proposing an approximate 
method for obtaining one-sided random-effects tolerance limits for an 
arbitrary mixed model with a nested random effect. The testing of 
composite materials is expensive, and engineers can usually only obtain 
a small amount of data for each value of various fixed effects (e.g., 
three batches of five specimens at each of several temperatures). The 
usual approach to calculating tolerance limits for such data involves 
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regression methods (e.g., Owen (1968), pp. 462-463) which ignore the 
batch effect. In this article we introduce an approach which includes 
the random batch effect and we apply this method successfully to two 
real-data examples. 

2    The Model 

Assume that we have data {Yijk}, where 

Yijk = xj0 + 6,i + eijk, (1) 

for i = 1,..., /, j = 1,... ,mi, and Jfc = 1,... ,ny. We will adopt the 
usual convention of indicating summation over a subscript by a dot, 
e.g- n,-. = £j riij. The independent random variables {6,j} and {ejj*}, 
distributed 

*o~N(0,<r4
2) (2) 

and 
e*fc~N(0,<7i), (3) 

model between-batch and within-batch random effects, respectively. 
The r x 1 vectors {x,} are arbitrary; though for convenience we will 
assume that the r x n. matrix X, which consists of rows xj each 
repeated n,-. times, is of rank r, so that XTX is nonsingular. 

In terms of this matrix X, we can write (1) as 

Y = X6 + T}, (4) 

where 
7?~N(0,£), (5) 

£ = diag(Eu,...,E,m(), (6) 

and 
S0- = oil + *? J, (7) 

for J a riij x riij matrix of ones. Let 6 be the ordinary least squares 
estimator of 0, so that 

Y = XÖ = X{XTX)-lXTY = HY, (8) 

where H (the 'hat matrix') is a projection matrix. 
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3    Estimating o\ and o 

Because the matrix X consists of / distinct rows repeated in blocks 
of n,-. rows each, it can be shown that the matrix H will be constant 
along diagonal blocks of size nf. x n,-.. Since H has this 'block constant' 
structure, we can easily determine closed form expressions for tr(jyS) 
and tr[(il£)2] in terms of the &,•. This will enable us to calculate the 
means and variances of certain quadratic forms (see, e.g., Seber (1977), 
Section 1.4), and to thereby derive estimators of a\ and <r*. 

The value of H in these blocks are the / distinct 'hat matrix diag- 
onals', available from most least squares regression software, and we 
will follow convention and denote these as {A,- }{=1. 

We begin by defining a second model, in which the matrix X is 
augmented to an (r + m. — /) x n.. matrix X by the addition of m. — / 
columns of batch indicators: 

Y = Xr + e, (9) 

where 
e~N(0,<£j), (10) 

and f denotes the least squares estimate of r, 

f = (Xrl)-1lrF. (11) 

We will use the first two moments of the residual sums of squares 
from these two models, 

BSSA = (Y-X0)T(Y-X9) (12) 

and 
RSSB = (Y - XT)

T
{Y - XT), (13) 

in order to construct estimators of the two components of variance. 
Because of the block diagonal structure of E and the 'block constant' 
structure of H, it is straightforward to calculate these moments: 

E(RSSA) = E^-MOK-^ + ^ + K'-i)^]»   (14) 
y 

Var(RSSA)   =   2£ [(1 - nyÄOfaX + <?wf + (ny - 1)<£] ,(15) 

E(RSSB)   =   <7* (n.. - r - m. + 0, (16) 
Var(RSSB)   =   2ai(n.-r-m. + l). (17) 
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We note that 
RSSB ~ <rlxl.-r_m+h (18) 

and we conjecture that 

RSSA ~ ^(no-cr? + <T>)xU,A + °lA.-r».' (19) 
«J 

The residual sums of squares RSSA and RSSB are generalizations 
of the 'total' and 'within' sums of squares in the one-way ANOVA 
model. However, in this case we do not have the usual decomposi- 
tion of ANOVA sums of squares; in particular RSSA and RSSB are not 
independent. It is possible to construct estimators of the variance com- 
ponents in terms of sums of squares which are independent, with only 
superficial changes to the proposed methodology. We have chosen to 
use the sums of squares defined above because, when the model is cor- 
rect, these sums of squares have more precision than the independent 
sums of squares. However, when the model is wrong, RSSA and RSSB 

will be biased; so there is an implicit tradeoff between bias and variance 
involved in the decision of how to estimate the variance components. 

We normalize the residual sums of squares (12) and (13), giving the 
mean squares 

RMSA ^ _   RS^A   . , = ^ (20) 

and 
_2       Xn..—m.— r+l RSSB 2    X* 

since 

RMSB =       "   _,_, ~ °l    *--»--+' (21) 
n.. - m. - r + / n.. - m. — r + / 

£ ny(l - hi) = ».. - tr(tf) = n. - r. (22) 
v 

Since E(RMSB) = <?l, RMSB provides an unbiased estimator of <r£,. 
Define 

RMS1 = Jr*"*}1'  \\RMSA- (23) 

When ah = 0, E(RMSA) = <£, and w^en a\ = 0, E(RMSA) = <76
2. 

When a\ - 0, RMSA has (at least) the same first two moments as 

RMSA° ~ otxl/vo, (24) 
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where 
u° = 51 n>'i(1 - ^») = n - ~ r- (25) 

»i 

When <J^ = 0, RMS^ has the same first two moments as 

RMSA^oJxiM, (26) 

where 

[r.i".i(l-n.A)]_ f07S 
^ =   r^ TR T\' (27) 

An unbiased estimator of a\ is 

S = (RMSA - RMSB). (28) 

We will modify this estimator by truncating at zero: 

S^maxO^O). (29) 

4    The Tolerance Limit Problem 

With most of the distribution theory out of the way, we can now finally 
get to the statement of the problem to be addressed. Let w be an 
arbitrary known r x 1 vector, and define a random variable U such 
that 

U~K(wT9yb+al). (30) 

We would like to construct a 1007% lower confidence limit on the 
100(1 - ß) percentile of U (where ß = .9 or ß = .99 for B- and A- 
basis values respectively). Upper and two-sided confidence limits can 
be defined similarly. Let $(•) denote the normal cdf, and define Zß so 
that 

*(*/») = £ (31). 

We will determine a function K of RMSA and RMSB SO that 

YT{W
T

0 - Ü^RMSA < vTÖ - H\l°\ + O « r (32) 
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We begin by evaluating 

Yax(wT6) = wT(XTX)-1XT£X(XTX)-1w, 

using the identities 
XrX = 2>.x<xf 

and 
XTXX = *£J>.*«f + ^IX-s,*? 

(33) 

(34) 

(35) 

If S% = 0, then we will conclude that tf = 0, and if Si = oo, we will 
conclude that a\ = 0. In the latter case we axe assured of being cor- 
rect in our assumption, consequently the approximate tolerance limit 
which we will construct should be nearly exact in the limit of large 
between-batch variance. On the other hand, we can never conclude 
with certainty that o\ = 0, so the tolerance limit will provide only 
approximately the nominal confidence level 7 when o* — 0. If S* = 0 
and we assume that a\ = 0, then K = KQ, where 

tfo = r-M7, 
Z0 

JwT(XTX)-lw 

If Sb = 00, then al = 0 and K = K\, where 

sjw
T{XTX)-1w. 

■Kl = i„    n,Zßy/C) >   - ;      , v 1   V JyZijniAl-niihi) 

cEijriij(l-hi) 

and 

c=tt,r(xrxrl 

We can write K\ as 

pr1*)-1«». 

£tJn0(l-/t,) 

(36) 

(37) 

(38) 

(39) 
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Note that K0 and K\ are of the form of normal distribution tolerance 
limit factors, with degrees of freedom for variance vQ and i/1? and effec- 
tive number of observations for the mean [wT(XTX)~1w]~1 and c_l, 
respectively. For this reason we define 

(XTX)~1w, 

(40) 

(41) 

(42) 

(43) 

(44) 

since RMSB is an unbiased estimator of <r*. If we condition on RMSA 

and RMSB, solve for a 'tolerance limit factor' K which will depend on 
the unknown variances, replace z^ and Zß with constants C\ and ci to 
be determined, and replace the unknown variances with estimates, we 
end up with a tolerance limit factor 

770
1 = UJ 

T(XTX)~1w 

and 

tf = v?{7?XYx 
(A 

so that 
KO-T-^^V/^/V/TJ 

and 
K1 = T-\7,zßy/m)/^m. 

It is convenient to let 

92 = Jw - = RMSB, 

K = cv 

where 

and 

\|RMS7 
+
 

C2
VRMST 

s2 = s? + sl 

^J*j9 = 5* /^ + Svfoa 

are estimators of a\ + a^ and Var(tt;r0), respectively. 
When S\ = 0, we must have that 

(45) 

(46) 

(47) 

(48) 
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and when S£ = 0, 
ffi-CiA/ih+Ca. (49) 

These equation determine C\ and C2, so that our tolerance limit factor 
IS 

V/RMSACV^O - V^T) 

If 56
2 = 0, then, for consistency, RMSA should be set equal to RMSB 

in the above formula. The tolerance limit factor is then 

T = wTß- Ky/RMSA, (51) 

where \/RMSA doesn't necessarily cancel with the denominator of K. 

5    Examples 

In order to illustrate the practicality of the above ideas, we discuss next 
two examples, both of which involve actual material strength data. The 
numerical results of this section were produced by a FORTRAN pro- 
gram which implements the methodology of this article, and which al- 
lows the specification of arbitrary nested mixed models. A preUminary 
version of this program is available from the author. 

In the first example, 24 specimens from each of three batches of 
a graphite-epoxy composite material were tested in tension, with six 
specimens being broken at each of four temperatures. We would like 
to obtain a 95% two-sided confidence limit, as a function of temper- 
ature, for the 10th percentile of the population of a random strength 
measurement selected from a randomly chosen batch. We assume that 
the mean strength varies quadratically with temperature, even though 
a linear relationship fits nearly as well, in order to emphasize that 
we have the flexibility to choose any parametric nurdel (provided, of 
course, that this model is linear in 8). The standard approach to this 
problem would'begin with pooling the 18 observations at each temper- 
ature. Having ignored the batch effect, classical methodology can be 
used to calculate the desired confidence limit (e.g., Owen, 1968, pp. 
462-463). The classical interval is displayed as the inner confidence 
interval in Figure 1 . If we assume that the batches can be treated as 
if they were nested, then the methodology of this article leads to the 
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outer confidence interval in Figure 1. Note that this new interval is 
considerably wider, reflecting the uncertainty in the 10th percentile of 
strength due to between-batch processing variability in the composite. 
However, we have treated the batches as if they were nested, which is 
not the case for this experiment. This is an approximation which (on 
the basis of a formal hypothesis test) appears to be justified in this 
particular case. 

In order to check whether, under the assumptions of the model, 
the confidence interval for the example in Figure 1 does indeed achieve 
nearly the nominal confidence level, 1000 random datasets Y = X6 + e 
were generated for the appropriate X matrix and with normally dis- 
tributed errors. The results of this simulation are not effected either 
by the particular value of 9 chosen or by a1 = <r\ + <r*; however the 
intraclass correlation 

P = ST (52) 
is a nuisance parameter which can be expected to have some effect on 
the confidence level. Therefore, we chose to perform this simulation 
for p = 0,.25,.5, .75,1, using the same pseudo-random numbers for 
each value of p. The extremes p = 0 and p = 1 correspond to no 
between-batch variability and no within-batch variability, respectively. 
The results of this simulation are displayed in Figure 2. Nominally, we 
would expect five percent of the replicates to fall in either tail; we can 
see from this figure that we nearly achieve this to within the error of 
the simulation, and that our results do not depend strongly on p. 

As a second example, we consider data on the the pressures at 
which spherical Kevlar-epoxy pressure vessels failed by bursting (Ger- 
stle and Kunz, 1983, p. 268). The data consist of 8 batches of sizes 
6,5,5,2,3,2,5, and 1. We have no covariates in this example, so that 
we are actually dealing with an extremely unbalanced on-way random 
effects ANOVA model. In Figure 3, 90% two-sided confidence limits 
are given both for the case where the batches are pooled, and for the 
method of the present article. Necessarily, the interval which includes 
the between-batch variability is wider than the interval which ignores 
it. A simulation study was done for this example exactly as before, 
and the results, presented in Figure 4, are quite good. As simple as 
this example is, this analysis already goes beyond methodology in the 
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statistics literature, which is at present restricted to balanced models. 

6    Conclusion 

In this article, we have proposed an approach to determining approx- 
imate one-sided tolerance limits (or equivalently, approximate confi- 
dence limits on quantiles) for nested models with a single random effect 
and arbitrary fixed effects. This technique has potentially important 
applications to the characterization of composite material strength in 
the presence of between-batch processing variability. Two real-data ex- 
amples illustrate the usefulness of the methodology, and the confidence 
levels in these examples have been shown to be close to the nominal lev- 
els, for all values of the unknown intraclass correlation, by simulation 
studies. 

There are many possible directions for future work. Perhaps the 
most important of these is to work toward a better understand the 
approximation underlying the procedure. Experience with a variety of 
examples suggests that the approximation is a good one, but one can 
expect it to break down in certain situations, and we should try to 
find out what these situations are. Further generalizations of the work 
in this article are possible, at least formally. Possible generalizations 
include non-nested models, more than one random effect, two-sided 
tolerance limits, and non-normal random effects. 
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ABSTRACT 

The goal of this study was to evaluate the camouflage 
effectiveness of the Small Area Camouflage Cover (SACC) for 
a green and brown site.  The SACC is designed to conceal 
individuals, small sized equipment and fighting positions. 
The test design consisted of the psychophysical Method of 
Limits to determine the just noticeable difference (JND) 
of each SACC.  The JND is the distance that an observer has 
a fifty percent probability of reporting the seeing or not 
seeing of an object.  Seven observers performed ten trials 
each, starting close to the SACC and walking back until they 
could not see the SACC, or starting at a distance where they 
could not see the SACC and walking toward it until the 
target was seen. The Student's T-Test was performed upon 
the JNDs to determine which SACCs were significantly 
(« <0.05) more camouflage effective, individual differences 
for each observer, and differences in the two modes of 
target approach. This study presented a unique test design, 
and joined the expertise of an engineer, statistician, and 
psychologist. 

1.0 SECTION I - INTRODUCTION 

The SACC is a continuation of a program begun in 1986 by 
the Belvoir Research, Development and Engineering Center to 
develop an individual camouflage cover. The SACC is 
designed to provide protection from visual, near-infrared, 
and radar observation. It will conceal individual troops, 
or be attached together for use over weapon emplacements, 
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fighting positions, and supply caches.  Each SACC weighs 
less than 518 grams (18 ozs.) and is small enough (2.13 X 
1.37m) to be folded and fit into the pocket of a soldiers 
uniform. 

The small size of the SACC precluded the type of usual 
range detection studies conducted in the past 1/ 2/ 3/. 
It was for that reason that the psychophysical Method of 
Limits 4/ was selected to determine the JND of each SACC. 
The JND is the distance that an observer has a fifty percent 
probability of reporting the seeing or not seeing of an 
object.  This test design will described in Section II. 

2.0 SECTION II - EXPERIMENTAL DESIGN 

2.1 Test Design 

The Method of Limits is designed to determine the visual 
threshold JND of an object being viewed.  This method is the 
only direct method of locating a threshold.  The observers 
are started at either the far end of the observation path 
where the target SACC cannot be seen, or at the start of the 
observation path where the target SACC is easily seen. The 
observers know where the target is located in either 
situation. The observers proceed either toward the target 
or away from the target.  They report when the target has 
just became visible or just disappeared from sight. This 
procedure was repeated ten times for each direction of 
target approach, and for each SACC at each of the two sites 
(See 2.3). The threshold has to be measured repeatedly, 
because its exact location varies from moment to moment. 
The marker nearest the threshold is recorded, and the mean 
distance determined. This mean is the threshold or JND for 
that observer for that particular SACC. 

2.2 Test Targets 

The test targets consisted of six candidate SACCs which 
have been coded to protect the identification of the 
individual manufacturers.  The following is a brief 
description of the SACCs: 

o SACC A - Constructed of a polyester mesh material 
printed in the current woodland uniform pattern. It is not 
reversible, i.e. it does not have a different pattern or 
color on the other side. 

218 



o SACC B - Constructed of incised vinyl coated nylon 
scrim.  It is reversible with a green pattern on one side 
and a brown pattern on the other side. 

o SACC C - Constructed of variegated polyester knit.  It 
is reversible with a green pattern on one side, and a brown 
pattern on the other side. 

o SACC D - Constructed of incised vinyl coated spun 
bonded nylon material sewn to a black nylon scrim base 
cloth.  The pattern is the same as found on the standard US 
woodland camouflage net.  It is not reversible. 

o SACC E - Constructed of a polyester mesh material 
which is not reversible.  The pattern is made of large areas 
of black and green color. 

o SACC F - Constructed of green and black dyed rip-stop 
nylon sewn in strips to a black mesh backing.  It has 100 
percent garnish cover and is not reversible. 

2.3 Test Sites 

There were a total of two sites used in this study.  One 
site was inside the woods and consisted of a brown leafy 
background with tall trees. The other site was an open 
green field. 

2.3.1 Brown Leafy 

The brown leafy site was located at a bend in a straight 
road, and consisted of a small slope under a cover of large 
deciduous trees. The ground was covered with a thick mat of 
brown leaves. This site resemble what one would see inside 
the forest. The site offered a continuous line of sight of 
880 feet. Forty two markers were placed, one every 20 feet 
starting 60 feet from the SACC, see Table 1. 

2.3.2 Green Field 

The green site was located on a hill at the Turner Drop 
Zone, Fort Devens, MA. The hill consisted of typical 
pasture grass and other growth, with a maximum height of 
about 2 feet. The site offered a continuous line of sight 
of 1560 feet. Thirty Five markers were placed, one every 40 
feet starting 200 feet from the placement of the SACC, see 
Table 2. 
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1 TABLE 1 

DISTANCE OF MARKERS TO SACC FOR THE BROWN LEAFY SITE 

DISTANCE IN DISTANCE IN 
FEET ALONG FEET ALONG 
PATH FROM PATH FROM 

MARI CER MARKER TO TARGET 

60 

MARKER 

22 

MARKER TO TAPKKT 

1 480 
2 80 23 500 
3 100 24 520 
4 120 25 540 
5 140 26 560 
6 160 27 580 
7 180 28 600 
8 200 29 620 
9 220 30 640 

10 240 31 660 
11 260 32 680 
12 280 33 700 
13 300 34 720 
14 320 35 740 
15 340 36 760 
16 360 37 780 
17 380 38 800 
18 400 39 820 
19 420 40 840 
20 440 41 860 
21 460 42 880 
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TABLE 2 

DISTANCE OF MARKERS TO SACC FOR THE GREEN SITE 

DISTANCE IN DISTANCE IN 
FEET ALONG FEET ALONG 
PATH FROM PATH FROM 

MARKER MARKER TO TARGET 

200 

MARKER 

22 

MARKI ER TO TARGET 

1 1040 

2 240 23 1080 

3 280 24 1120 
4 320 25 1160 
5 360 26 1200 

6 400 27 1240 
7 440 28 1280 

8 480 29 1320 

9 520 30 1360 
10 560 31 1400 

11 600 32 1440 

12 640 33 1480 

13 680 34 1520 

14 720 35 1560 

15 760 
16 800 
17 840 
18 880 
19 920 
20 960 
21 1000 

2.4 Test Subjects 

A total of seven military and civilians served as ground 
observers. All personnel had at least 20/30 corrected 
vision and normal color perception. 

3.0 SECTION III - RESULTS 

Of the 6 SACCs studied, only 3 were effective in 
achieving a threshold JND.  SACC B, which was reversible 
with a green and brown side, had a JND for the green and 
brown leafy sites. SACC C, also reversible, achieved a JND 
for the brown leafy site when the brown side was shown. 
Tables 3 and 4 summarize these results for the brown leafy 
site and the green site. 
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NO JND 
JND 
JND 
NO JND 
No JND 
No JND 

TABLE 3 

SUMMARY OF SACC DATA BROWN LEAFY SITE 

SACC JND 

IN. OUT 

A No JND 
B JND 
C JND 
D NO JND 
E No JND 
F No JND 

No JND - SACC still visible at maximum range of 880 feet. 
Table 3 shows that only the SACC B and C had a JND. 

TABLE 4 

SUMMARY OF SACC DATA GREEN SITE 

SACC JND 
IN OUT 

A NO JND No JND 
B. JND JND 
C No JND No JND 
D No JND No JND 
E No JND NO JND 
F No JND No JND 

No JND - SACC still visible at maximum range of 1,560 feet. 
Table 4 shows that only the SACC B had a JND. 

The JNDs were calculated using two different 
mathematical approaches.  The first calculated the mean of 
the ten trials approaching the target trials and the ten 
trials retreating from the target.  This- was done for all 
seven subjects and across all subjects.  The results are 
found in Tabl-es 5 through 10. The second type of mean 
threshold or JND was determined by adding each approaching 
and retreating JND and dividing by two.  The overall mean 
across all observers was also determined.  These results are 
seen in Tables 11 through 13. Table 14 contains the 
Student's T-Test 5/ for each of the three types of JNDs for 
the comparison of the SACC B vs. SACC c for the brown leafy 
site.  Table 15 contains the probabilities for the Student's 
T-Test of Table 14. 
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TABLE 5 

JUST NOTICEABLE DIFFERENCE, GROUND OCKERSI APPROACHING 
TARGET, SACC B, BROWN LEAFY SITE 

OgggKVER        "»» ™" P*"GF" FEET     STANDARD DEVIATION 

AnitOle 152.00 12.29 
Johnson 163.30 
Bullock 220.60 6>75 

Person 167.00 59>64 
Wedenteyer 241.60 

LYOnS    TOTAL:       Si'.oS «-33 

TABLE 6 

JUST NOTICEABLE DIFFERENCE, GROUND OBSERV^ A*PROACHING 
TARGET, SACC C, BROWN LEAFY SITE 

OBSERVER 
jr*P   ™n p*wr,F.. FEET     STANDARD DEVIATION 

Anitole 263.00 W;JJ 
Johnson Ln 42 23 
Bullock 18|.90 48'59 
Person "5.00 ?6>89 
Wedemeyer "5.30 
Sadley 226.10 i£.>78 
LYOnS    TOTAL:       205:°43 65.09 

TABLE 7 

JUST NOTICEABLE DIFFERENCE, GROUND OBSERVERS APPROACHING 
TARGET, SACC B, GREEN SITE 

OBSERVER 
HPMT .-nm PlWfiW. FEET     STANDARD DEVIATION 

anitole 440.00 
Johnson 371.90 3g 
Bullock 4 01.60 56>13 
Person 298.00 w^ 
Wedemeyer „i«o 222.62 
sadley 731.60 ^  g2 
Ly°nS               TOTAL: JSlSo 228.93 
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TABLE 8 

JUST NOTICEABLE DIFFERENCE, GROUND OBSERVERS RETREATING FROM 
TARGET, SACC B, BROWN LEAFY SITE 

OBSERVER 

Anitole 123.00 13.98 
Johnson 180.70 16.64 
Bullock 209.30 21.34 
Person 200.00 9.43 
Wedemeyer 219.40 38.87 
Sadley 224.00 18.30 
Lyons 182.00 35.52 

TOTAL •:     191.20 39.63 

TABLE 9 

JUST NOTICEABLE DIFFERENCE, GROUND OBSERVERS RETREATING FROM 
TARGET, SACC C, BROWN LEAFY SITE 

OBSERVER MEAN JND RANGE. FEET STANDARD DEVIATION 

Anitole 
Johnson 
Bullock 
Person 
Wedemeyer 
Sadley 
Lyons 

TOTAL: 

224, ,00 
190. .80 
176. .00 
230. .00 
252. .30 
221, .30 
172. .00 
209. .49 

TABLE 

25.91 
33.73 
40.79 
46.90 
64.34 
61.98 
30.48 
51.93 

JUST NOTICEABLE DIFFERENCE, GROUND OBSERVERS RETREATING FROM 
TARGET, SACC B, GREEN SITE 

OBSERVER 

Anitole 374.00 44.27 
Johnson 309.90 47.69 
Bullock 392.30 174.39 
Person 278.00 51.16 
Wedemeyer 658.00 166.65 
Sadley 660.50 241.86 
Lyons 538.60 143.88 

TOTAI .:      458.76 202.53 
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TABLE 11 

APPROACHING PLUS RETREATING JND DIVIDED BY TWO, 
GROUND OBSERVERS, SACC Bf BROWN LEAFY SITE 

OBSERVER 

Anitole 
Johnson 
Bullock 
Person 
Wedemeyer 
Sadley 
Lyons 

MEAN JND RANGE. FEET 

TOTAL: 

137. ,50 
172. .00 
214. .95 
183, .50 
238 .50 
224 .35 
168 .00 

l               191 .25 

1 rABLE 12 

STANDARD DEVIATION 

10.41 
9.00 

20.25 
7.09 

49.19 
14.28 
40.79 
40.81 

APPROACHING PLUS RETREATING JND DIVIDED BY TWO, 
GROUND OBSERVERS, SACC C, BROWN LEAFY SITE 

OBSERVER 

Anitole 
Johnson 
Bullock 
Person 
Wedemeyer 
Sadley 
Lyons 

MEAN JND PANGE. FEET 

TOTAL: 

243. ,50 
183, .25 
181, .45 
207, .50 
263, .00 
223 .70 
149 .00 

I               207 .46 

1 TABLE 13 

STANDARD DEVIATION 

24.16 
30.38 
41.49 
47.51 
70.53 
54.79 
21.83 
56.42 

APPROACHING PLUS RETREATING JND DIVIDED BY TWO, 
GROUND OBSERVERS, SACC Bf GREEN SITE 

OBSERVER MEAN JND BANC?Z.   FEET STANDARD DEVIATION 

Anitole 
Johnson 
Bullock 
Person 
Wedemeyer 
Sadley 
Lyons 

TOTAL: 

407.00 
340.90 
396.95 
288.00 
715.50 
696.05 
499.00 
477.62 

33.02 
52.05 
156.73 
48.03 
171.32 
231.48 
196.43 
211.23 
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TABLE 14 

STUDENTS T FOR THE COMPARISON OF THE MEAN JND OF 
SACC B vs. SACC C IN BROWN LEAFY SITE 

FOR EACH GROUND OBSERVER 

APPROACHING RETREATING 
OBSERVER JND JND 

Anitole -12.44 -10.85 
Johnson - 1.25 - 0.85 
Bullock 2.29 2.29 
Person - 1.16 - 1.98 
Wedemeyer - 1.10 - 1.38 
Sadley - 0.09 0.13 
Lyons 1.76 0.68 

TOTAL: - 1.72 - 2.34 

APPROACHING PLUS 
RETREATING JND 
DIVIDED BY TWO 

-12.74 
- 1.12 

2.29 
- 1.58 
- 1.22 

0.04 
1.38 

- 2.08 

A negative sign means that the mean JND for SACC B is 
smaller than the mean JND for SACC C. 

TABLE 15 

PROBABILITIES OF THE STATISTICAL COMPARISON OF 
THE MEAN JND OF SACC B vs. SACC C, 

BROWN LEAFY SITE FOR EACH GROUND OBSERVER 

OBSERVER 

Anitole 
Johnson 
Bullock 
Person 
Wedemeyer 
Sadley 
Lyons 

TOTAL: 

APPROACHING RETREATING 
JND JND 

*0.000 *0.000 
0.228 0.407 

**0.039 **0.034 
0.261 0.063 
0.288 0.183 
0.929 0.896 
0.096 0.508 

0.088 **0.021 

APPROACHING PLUS 
RETREATING JND 
DIVIDED BY TWO 

*0. ,000 
0. .276 

**0. ,034 
0, ,132 
0, ,237 
0. ,971 
0. .210 

**0. .039 

* Significant at « <0.00i 
** Significant at « <0.05 

4.0 SECTION IV - DISCUSSION 

Tables 3 and 4 show that the SACCs B and C achieved a 
JND threshold for the brown leafy site. The reversible 

226 



green side of the SACC B was the only one to achieve a JND 
at the green site. No JND at the brown leafy site means 
that the SACC was seen at the maximum range of 880 feet. 
The maximum range at the green site was 1,560 feet. An 
inspection of Tables 5-13 shows that there are large 
individual between observers, but each observer had a fairly 
constant approaching and retreating threshold. That is the 
approaching and retreating threshold are very close to each 
other. Thus the use of the Method of Limits was very 
successful in determining the threshold of the SACCs in 
terms of range. Table 14 indicated that SACC B had a 
smaller JND 13 out of 21 times. This difference was 
significant for the retreating JND and the averaged approach 
retreating JNDs, « <0.05 (Table 15). 

5.0  SECTION V - SUMMARY AND CONCLUSIONS 

A total of six SACCs were evaluated by ground observers 
to determine the range of effectiveness JND. The JND is 
defined as the distance at which a target starts to appear 
or blend into the background. The ground observers started 
from both the beginning and end of an observation path with 
surveyed stations. The observation station nearest the JND 
was recorded. The test targets consisted of six candidate 
SACCs which were coded to protect the identification of the 
individual manufacturer. The following conclusions were 
determined: 

a. SACC B had JNDs for both the brown leafy site and 
the green site. 

b. SACC c had a JND for the brown site. 

c. The JND threshold varied greatly from observer to 
observer, but was constant within each observer for the 
approaching and retreating threshold determination. 

d. The Method of Limits is a good test design to obtain 
range data for small sized test items. 
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AN EXPLORATORY ALGORITHM FOR THE ESTIMATION OF 
MODE LOCATION AND NUMEROSITY IN MULTIDIMENSIONAL 

DATA* 
Marc N. Elliott and James R. Thompson 

Rice University, Houston, Texas 77251-1892 

Abstract 
Many   advocate   using   nonparametric   density   estimation   as 

a tool for mode estimation.    While this approach may be 
appropriate  in  the univariate and  bivariate cases,  it  can  be  quite 
inefficient   in   higher  dimensional   situations.      A   nonparametric 
algorithm   is   presented   which  determines   the  number  and 
location of modes in a multidimensional data set.    The procedure 
can be used in data exploration and can also automatically and 
nonparametrically   test  for  multimodality.      Several   applications 
are discussed.    In particular, it is demonstrated that the Fisher- 
Anderson iris data,which contains 3 species, has 4 modes. 

Consider the problem of the exploratory analysis of a data set 
with four or more dimensions, relatively few observations, and large 
differences in scale.    Since there is much "empty space" in high 
dimensional data sets, a good first step would be to find modes, local 
maxima of probability density.    These modes could then serve as 
"base camps" for the further exploration of the structure of the data. 

It would not be easy to enumerate and locate these modes 
using  standard  nonparametric density estimation  techniques     Large 
differences in scale are a real difficulty for kernel density estimation, 
given that choice of kernel size is a critical problem.    Furthermore, 
high dimensionality is quite problematic for standard methods of 
nonparametric  density  estimation.     Such techniques  often require 
unreasonably  many  observations  for high dimensional problems. 

Imagine now a data set that one would never even consider 
analyzing  with   standard  techniques:  200   12-dimensional 
observations.    According to Silverman(1986), one would need 
842,000 observations just to get good density estimates near the 
mode of a standard multivariate normal distribution in 10 
dimensions. 

Most researchers would probably discard all but two or three 
dimensions or would only collect two or three variables in the first 
place.    But throwing out variables is throwing away information that 
can help locate modes.    Mode estimation should become easier in 
high dimensions, if one can harness the additional information 
without being swamped by the empty space.      We have developed 

*This research was supported, in pari, by the Army Research Office (Durham) under 
DAAL-03-91-G-0210   at  Rice   University. 
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an algorithm that can do so,' automatically. 

METHOD 

Before analysis, data is standardized dimension by dimension, 
so that each dimension has mean zero and variance one.    After 
analysis, the "z-transform" is reversed, returning the units to those in 
the raw data.    The standardization is done to prevent scale 
differences among  dimensions from unduly influencing  the  analysis. 
If one has a priori   knowledge that the dimensions are naturally of 
comparable scale, one might want to omit this standardization. 

The algorithm itself consists of three stages.    In the first stage, 
data is condensed locally. In the second stage, the condensed 
representation is used to construct "best" models for different 
numbers of modes.    In the third stage, one of those models is 
selected  through  a hierarchical test. 

Condensing   Data   Locally 
The central element of this stage is the Mean  Update Algorithm 

(MUA), explicated in previously published work (Boswell,  1983; 
Thompson & Tapia, 1990).   The MUA is an algorithm for moving 
toward local centers of probability density from any starting point in 
multi-dimensional space.    It has the property that it is not thwarted 
by high dimensionality.    An outline of the algorithm follows: 

Select a starting point, x 
Select  a # of nearest  neighbors  parameter,  k 

update=True 
While   update=True 

Select the k nearest neighbors of x  in terms of Euclidian distance 
x'=   the   dimension-by-dimension   mean   of  these k neighbors 

If x'=x  then  update=False 
End 

Output x 

It should be noted that Boswell established that the MUA always 
terminates. 

The MUA is used in the following manner in order to locally 
condense a multidimensional data set of size n: 

Select a parameter, mm « n 
rn = n 

While   m > m m 
Run the MUA n times in parallel, using each  data point as  a starting point 

Record the n outputs as the new data set 
m= the number of different points in the data set 

End 
Output the condensed data set of size n 
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The parameter mm represents the largest number of. modes that one 
wants to consider as a possibility.    Excessively large values of mm 
result in inefficiency.    Often mm =5 is a good default. 

While the    MUA itself always terminates, the process of 
condensing the data set using the MUA can "stall" .   On rare occasions, 
the number of different points in the data set, m, will not decrease 
from one iteration of the condensation algorithm to the next.    In this 
case, the number of different points in the data set is reduced to mm 
in a manner similar to that used for reducing the number of modes 
in the following stage. 

The selection of the number of nearest neighbors parameter, k, 
is very important.    A value that is too large tends to combine distinct 
modes.   A value that is too small is inefficient and also has a slight 
tendency to fracture unitary modes.    If one is running the algorithm 
with a human observer, it is easy to adjust k to an appropriate level. 
The practical advantages of an automated algorithm, however, 
demand that we find a workable automatic procedure for selecting k. 

Mack and Rosenblatt (1979) showed that k=cn4/<4+d> has 
optimal properties for nearest neighbor density estimation in 
dimension  d.    Wong and Lane (1983) recommended k=n1/2 for 
clustering  multidimensional  data with  nearest  neighbor  techniques. 
We found that k -n1/2 works well in our application.    Note that our 
value approximates that of Mack and Rosenblatt for </= 3 to 8.   If one 
knows that one's data is extremely    kurtotic, one might want to 
consider reducing k, since highly kurtotic multidimensional data 
exhibit very little clustering.    Nevertheless, the given value of k is 
very broadly applicable, even with kurtotic data, as will be seen. 

Constructing     Models 
Consider the output of the first stage.    It is a data set containing 

n points, mm of which are different.    Alternatively it consists of m m 
values, each of which has m replications,  such  that 

. mm 
i=l,. .. , mm and  £ni =n. 

i=l 
One can consider these mm values to represent point estimates of 
potential modes, since they are the locations in multidimensional 
space to which the MUA was drawn.   Furthermore, the m reflect the 
relative density of the space surrounding each potential mode, since 
they ultimately reflect the number of points in the original data set 
that were drawn to the potential mode.    One might then consider this 
representation to be a mm mode model of the data set, complete 
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with information relating to the local density surrounding each 
potential  mode. 

The mm mode model is then used to construct models 
consisting of 1, 2, . . .mm modes in the following manner: 

For     i- mm to 1 
Find  2  nearest remaining  modes,  in  terms  of Euclidian  distance 

Replace the 2 modes with 1: a dim. by dim. average, weighted by nj's 
Let the nj of the new mode be the sum of those combined to form it 

End 

Hierarchical   Test   of   Modes 
At this point there exist mm models of the data, consisting of 1, 

2, ... mm modes.   A hierarchical test procedure   is then used to 
chose among the models: 

i=0 
rejectnull = TRUE 

While    rejectnuII = TRUE 
i = i + l 

Test Ho: i  modes vs. Hi: i+1 modes 
If BINOMIAL TEST OF BIMODALITY (BTOB) fails to reject,   rejectnulI=FALSE 

End 
Conclude i modes 

The procedure is based on a test we call the Binomial Test of 
Bimodality.    This test was developed to determine whether a given 
region of multidimensional space is better represented by one or two 
modes. If one views the process of combining modes as outlined 
above in reverse order, it can be seen as successive splitting of one 
mode in the set into two new modes.   The BTOB can be applied to the 
region of space involving the mode proposed to split.    Incorporating 
this into the hierarchical procedure outlined above allows one to 
decide upon the optimal number of modes and hence the best 
representation. 

The principle of the BTOB is as follows.   Let- us call the mode 
that the algorithm may split Ml.   Let us call the two modes it splits 
into M2a   and M2b.   Spatially, Ml will lie between M2a   and M2b. 
If the alternative hypothesis of two modes is true, the density near 
M2a and M2b should be high relative to that near Ml. If the null 
hypothesis of one mode is true, the density near Ml should be high 
relative to that near M2a   and M2b. The BTOB will simply be a one- 
tailed test of the alternative hypothesis that    the density near M2a 
and M2b is higher than that near Ml    versus the conservative null 
hypothesis that the density near   Ml is equal to that near M2a   and 
M2b. 
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The BTOB proceeds as follows: D-dimensional spheres are 
constructed around each of the points A/7,Af2a, and M2b.   The ratios 
of the radii (and hence the ratios of the volumes) are fixed such that 
the radii are proportional to n/ , the measure of relative local density 
near each of the three points.    Given the process of mode splitting, 
this ensures that the volume of the sphere surrounding Ml is equal 
to the sum of the volumes of the spheres surrounding M2a and M2b. 
Thus, under the null hypothesis, an equal number of points from the 
original data set would be expected in the first sphere as in the 
second two combined.    Under the alternative, more would be 
expected in the second two.    Initially the radii are scaled such that 
they just intersect. They are then slowly enlarged    proportionately 
until the number of points captured in the three spheres reaches 25% 
of the ni for Ml.    Under the null hypothesis,    the number of points 
captured in the Ml sphere is distributed binomially, with the 
number of trials being the total number of captured points and the 
probability of success being .5.   An exact binomial test of this null 
hypothesis is then performed, using a nominal type I error rate of 
.05 

RESULTS 

Simulations 
The algorithm was tested with multimodal simulated data 

generated from mixture densities.    The algorithm was tested with 25 
simulations under each of 72 sets of conditions.    The sets of 72 
conditions consisted of all possible combinations of   four factors. 

Factors    Examined 
The first factor examined was the type of distribution used for 

the unimodal densities comprising the mixture.    Uncorrelated 
multivariate  normal,   slightly  correlated  multivariate  normal,  and 
uncorrelated multivariate t with 3 degrees of freedom were used. 
The t distribution was used to illustrate the performance of the 
algorithm under conditions of high kurtosis. The slightly correlated 
distribution had a correlation matrix with values ranging from .1 to 
.2. 

The second factor examined was the dimensionality of the data 
set.   Data sets of 4, 8, and 12 dimensions were used.   It seems 
unnecessary to  investigate the  algorithm's performance in lower 
dimensionalities, as adequate techniques for mode estimation 
already exist for such cases. 
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The third factor examined was the number of modes in the 
mixture density.   Densities with 1, 2, 3, and 4 modes were used.   For 
all simulations, the maximum number of modes parameter, mm, was 
set to 5, so that the algorithm only considered the possibility of 1 to 
5 modes. 

The fourth factor examined was sample size.    Very modest 
sample sizes of 100 and 200 were used.    Larger sample sizes were 
used in an application that follows. 

Figures la-Id illustrate the analysis of 200 observations from a 
12-dimensional data set with 4 modes.    The figures show 2 of the 12 
dimensions of the data set. 

Construction   of   the   Densities 
The centers of the constituent densities of the mixture densities 

were  determined  by  sampling  from  an  uncorrelated  multivariate 
normal distribution.    The proportion of points allocated to each 
constituent density was as follows: .75 and .25 for 2 mode densities; 
.45, .35, and .20 for 3 mode densities; and .40, .24, .19, and .17 for 4 
mode  densities. 

Distance    Between    Modes 
The amount of distance between the modes in the multimodal 

mixture density is very important in determining how difficult the 
mode estimation problem is.    The metric used was the Euclidian 
distance between the two nearest modes of the multimodal mixture, 
divided by the number of dimensions.    The minimum distance 
between modes was found to reflect the difficulty of the problem 
more accurately than the average or median distance between 
modes.      These distances were divided by the number of dimensions 
so that they corresponded to the amount of information present per 
dimension.    The units in which the distances are measured are 
standard deviations of the unimodal densities comprising the 
mixture. 

Two aspects of the algorithm's performance were measured. 
The first was the accuracy of the algorithm in determining the 
correct number of modes.    The second was the accuracy of the 
estimates of mode location. 

Determining   the   Correct   Number   of   Modes 
The criterion used to assess performance in this regard was the 

smallest amount of distance between modes (as defined above) that 
resulted in the algorithm correctly determining the number of modes 
in 20 or more of the 25 simulations.    This quantity will be called the 
Separation Needed for Accurate Mode Counts (SNAMC). 
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Table 1 reports SNAMC for Uncorrelated MV Normal Mixtures. 

Table   1:   Uncorrelated   MV   Normal   Mixtures   (SNAMC) 

N=100 N=200 

Dim. 2 modes 3 modes 4 modes 2 modes 3 modes 4 modes 
4-D 3.75    5.3    4.3    3.0    4.0    3.2 
8-D 2.75    3.7    3.6    2.25    2.6    2.2 
12-D 2.0    3.7    3.4    2.0    2.4    1.8 

Several trends are apparent in Table 1.    First, performance improves 
with dimensionality.    As dimensionality increases, less information is 
needed per dimension in order to achieve a given level of 
performance.    Second, performance is much higher with a sample 
size of 200 than with a sample size of 100.   This is promising for 
larger samples.    No trends are apparent with respect to numerosity 
of modes.   Finally, it should be noted that these levels of 
performance are quite good.   Figure la shows 2 dimensions of a 200 
observation,   12-dimensional  mixture  of 4  uncorrelated  multivariate 
normal distributions with a minimum separation between modes of 2 
standard deviations per dimension, corresponding to the SNAMC 
above.    As can be seen, the overlap in distributions is substantial. 

The  same  amount of separation  between  modes  (standardized 
by standard deviation) that constituted the SNAMC with uncorrelated 
multivariate  normal mixtures  was  used  in simulations  involving 
mixtures of uncorrelated multivariate t distributions  with 3  degrees 
of freedom.    In all cases, the correct number of modes were declared 
in 20 or more of the 25 simulations.    Thus it appears that fairly 
substantial kurtosis does not adversely affect the performance of the 
algorithm. 

The effects of correlation in the data are apparent in Table 2. 

Table   2:   SNAMC   of   Correlated   and   Uncorrelated   MVN 
mixtures     (N=100) 

Uncorrelated Slightly  Correlated 

Dim. 
4-D 
8-D 
12-D 

modes 
3.75 
2.75 
2.0 

modes 
5.3 
3.7 
3.7 

modes 
4.3 
3.6 
3.4 

modes 
4.5 
3.5 
3.0 

modes 
6.0 
4.2 
4.2 

modes 
4.8 
4.0 
4.0 
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It is clear that more separation between modes is required for 
correlated data.    This is unsurprising, since correlation among the 
variables means that less total information is present. 

Unimodal distributions do not involve separation of modes, so 
the criterion used for unimodal densities was the proportion of the 
cases in which their unimodality was identified.    This occurred in 
425 of 450 runs (94.4%), which corresponds closely to the nominal 
type I error rate of 5%.    In each of the cases in which multimodality 
was falsely claimed, the algorithm declared 2 modes. 

Accuracy   of   Estimates   of   Mode   Location 
Location accuracy was examined for data sets with separation 

corresponding to the SNAMC listed above.    It was measured, mode- 
by-mode, only for those cases in which the number of estimated 
modes was correct.    The criterion used to assess performance in this 
regard was based on a MSE criterion.   The MSE of the estimate of a 
given mode was defined as follows: 

Let the true mode location be (xj, . . ., xp) in p dimensions 
Let the estimated location be (x*j x*p) 

MSE=^-f(xi-xi*)2 

The average MSE (AMSE) for each of the modes was the criterion 
used.    Note that the MSE will vary with the density surrounding each 
mode (or the mixture proportions in the case of mixture densities). 
Also note that the best expected AMSE that could be achieved for a 
given mode in a mixture density would be the AMSE of the mean of 
only those points from the correct subdistribution.    This AMSE would 
be l/(prop*n)    for subdistributions with unit variance and prop*n 
points.   The units of the AMSE will be the variance of the 
subdistributions.   AMSE's for sample sizes of 100 are in Table 3.   As 
can be seen in the table, distributional form and dimensionality do 
not affect the accuracy of estimation of« mode location once the modes 
are separated sufficiently for their number to be accurately assessed. 
How much separation is required for this to occur is   affected by 
dimensionality and correlation, as was seen before.    The AMSE's are 
roughly inversely proportional to the number of points in the 
subdensity.    Similarly, the MSE's with a sample size of 200 are 
approximately half of what they are with a sample size of 100. 

Finally, it should be noted that the accuracy of the location 
estimates is quite high.   The AMSE's reported for a sample size of 
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200 imply that the standard deviations of estimates of mode location 
are 1/8 to 1/4 the standard deviations of the subdistributions, 
depending on the size of the mode. 

Table   3:   AMSE   of  Mode   Location   Estimates,   N*100 
2   Modes 3   Modes 4   Modes 

Dist'n 

Normal 
Uncorr 

Normal 
Corr 

T(3) 
Uncorr 

Dim. 
4-D 

8-D 

12-D 

4-D 

8-D 

12-D 

4-D 

8-D 

12-D 

.75 
.045 

.050 

.067 

.037 

.049 

.056 

.030 

.046 

.058 

.25 
.088 

.100 

.101 
i,     ■■ 

.078 

.100 

.097 

.45 
.046 

.051 

.053 

.049 

.046 

.051 

.35 
.070 

.063 

.059 

.065 

.059 

.052 

.076 

.086 

.088 

.060 

.060 

.080 

.060 

.076 

.077 

20       .40      .24 
123 | .048      .092 

099 .102 

.089 

.056 

.065 .097 

.19 

.121 

.106 

.098 

.116 

.112 

.096 

.084 

.100 

.105 

.067 

.055 

.053 

.063 

.083 

.088 

.079 

.098 

.092 

.100 

.093 

.105 

.143 

.090 

.094 

.153 

.120 

.110 

.17 
.144 

.112 

.104 

.150 

.123 

.108 

.107 

.121 

.137 

Applications 
It is difficult to find real-world data sets which have been 

collected with a large number of variables, simply because 
researchers do not tend to collect data for which they lack effective 
analytical tools.    We were able to find two 4-dimensional data sets to 
which we could apply the algorithm.    The first, a set of observations 
regarding shell penetration behind an armor plate, was kindly 
supplied by Dr. Malcolm S. Taylor of the Army Research Laboratory 
in Aberdeen, Maryland.    The second is the well-known Fisher- 
Anderson iris data. 

Shell   Penetration   Behind    an   Armor   Plate 
The data is a collection of 944 observations regarding shell 

penetration behind an armor plate.    The identity of the variables is 
classified, but it may be noted that the means of the variable are of 
the orders 102,   101,   101,   and 10*1.    Their standard deviations are of 
the orders 102,   101,   101,   and 100, correspondingly.    Two of the four 
dimensions are pictured in Figure 2a.    In less than 2 minutes, the 
algorithm was able to find 2 modes, as pictured in Figure 2b. The 
presence of 2 modes was confirmed by sources familiar with the data 
set. 
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There are additional uses that may be made of this data set. 
One could transfer the data from one 944 X 4 matrix to another, 
reading down the columns of the first matrix, but entering across the 
rows of the second matrix.   This would result in a new data set of 
944 observations in four dimensions.    Three modes, corresponding to 
the large-scale variable , the two medium-scale variables, and the 
small-scale variable of the original data would be created by the 
natural differences in scale of the original variables.    These modes 
would contain 25%, 50%, and 25% of the data, respectively.   This new 
data set would thus be a stringent test of an automatic algorithm's 
ability to cope with vast differences in scale.   Figure 3a shows a 
representation of the altered data set.    Figure 3b shows the 3 modes 
which the algorithm successfully located.    Finally, Figures 3c and 3d 
enlarge the scale to reveal the "micro-universes" in which two of the 
modes   reside. 

Fisher-Anderson    Iris    Data 
The Fisher-Anderson iris data is a well known set consisting of 

150 observations of 4 variables.    The 150 observations consist of 50 
observations of each of 3 Iris species: /. setosa, I.   versicolor, and /. 
virginica.    The variables measured were sepal length, sepal width, 
petal length, and petal width.   Table 4 lists the means of the species 
on each of the variables. 

Table 4:   Mean   Characteristics of   Irises,   by   Species 
Species Sepal   Length     Sepal  Width Petal   Length      Petal  Width 
Setosa                  5.006                    3.428 1.462 .246 

Versicolor 5.936 2.770 4.260 1.326 
Virginica 6.588 2.974 5.552 2.026 

/. setosa   is distinguished from the other two species relatively 
easily.   /.   versicolor and /.  virginica, however, are very difficult to 
distinguish.    In fact, the proximity of the means of the two 
distributions relative to their variances, in combination with the very 
high degree of correlation present in the variables, has made the 
data set famous for its difficulty. 

Intuitively, one would assume that the density consisting of a 
mixture of three species would have thTee modes.    Indeed, it has 
long been the aim of mode-finders to demonstrate that their 
algorithm declares the Fisher-Anderson data to contain 3 modes, as 
opposed to the 2 modes (setosa, versicolor/virginica) that are usually 
found.   When we ran the algorithm on the data set, it declared 4 
modes, as is shown in Table 5. 
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Table   5:      Estimated   Modes   of  Iris   Data 
Mode Name      Sepal   Length     Sepal  Width      Petal   Length      Petal  Width 

Setosa 4.992 3.411 1.462 .225 
Versicolor* 5.642 2.696 4.101 1.267 

Versi/Virgin 6.249 2.893 4.837 1.591 
Virginica* 6.762 3.067 5.589 2.218 

The algorithm found one mode at the mean of the setosa 
distribution.    This location was estimated with extraordinary 
accuracy.    It then found 3 modes for the speci&sversicolor   and 
virginica: : one right between the modes of the two species, and two 
to the outsides of the species means.   All three estimates fell on a 
line. 

We decided to investigate whether three mode actually exist 
for the two species.   We did this by projecting the versicolor    and 
virginica    observations onto the line determined by the three 
estimates of mode location.    The gaussian-smoothed histogram of 
these projections (Figure 4a) strongly supports this conjecture of 
three modes from two species.    Similar results were obtained by 
projecting onto the line determined by the versicolor    and virginica 
means (Figure 4b).    It seems likely that this local trimodality is 
caused  by  overlapping  distributions,  and that the Fisher-Anderson 
iris data, while consisting of 3 species, contains 4 modes. 
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SAMPLE-WEIGHTED AVERAGE OF VECTORS 

Aivars CelraiaS 
Advanced Computational and Information Sciences Directorate 

U.S. Army Research Laboratory 
Aberdeen Proving Ground, MD 21005-5067 

ABSTRACT. The average burst point of artillery shells is computed from 
observations of individual burst points in repeated firings. We review such calculations 
within the framework of general least-squares averaging of observations in an n- 
dimensional space and propose to use a "sample-weighted" average in cases where the 
event scatter (the dispersion of the fire) is unknown and neither it nor the observational 
errors can be neglected. An iterative computation of the sample-weighted average is 
presented. The algorithm produces estimates of the vector average and of the event 
scatter, that is estimates of the expected burst point location and of the dispersion of 
the artillery fire. 

1.    INTRODUCTION. To determine  the  accuracy of artillery fire one 
measures the coordinates of the shell's burst point in repeated firings and calculates an 
average burst point and its scatter from these measurements. The task amounts to the 
computation of an average vector in It3. The accuracy of each observed vector is 
known from an analysis of the actual measurements and depends mainly on the 
geometry of the setup and properties of the measuring instruments. Typically the 
actual measurements are azimuth and elevation observations from four or more 
observation towers using theodolites. A non-linear least-squares analysis of these 
measurements provides for each observed round an estimate of the burst-point 
coordinate vector together with accuracy estimates of its components. We assume that 
these accuracy estimates are given in form of an estimated variance-covariance matrix 
of the components for each observed coordinate vector. If the cannon would fire every 
time exactly alike (i.e., if the event scatter would be zero) then a reasonable estimate of 
the burst-point coordinates could be obtained from these vectors by an observation- 
weighted averaging where the weights are the inverses of the variance-covariance 
matrices of the observations. However, in practice the event scatter (the dispersion of 
the artillery fire) can be of the same order or even larger than the measurement scatters 
and cannot be neglected. Also, in general the principal directions of the event dispersion 
are different from the principal directions of the measurement-error distributions. 
Therefore, an observation-weighted averaging in R3 can have unacceptable results.  On 
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the other hand an unweighted averaging does not take into account the estimates of 
measurement errors that can be quite different for different rounds. In this paper we 
define a new "sample-weighted" average of vectors that does not have the disadvantages 
of observation-weighted or unweighted averages. The definition includes an estimate of 
the event variance (the dispersion of the artillery fire) that is consistent with the 
observations and their estimated variances. An iterative algorithm for the computation 
of the sample-weighted average is suggested. 

In Section 2 we define the problem of vector averaging in JRn that corresponds to 
the outlined artillery problem and propose a solution. Section 3 contains some examples 
and Section 4 is a summary. 

2. ESTIMATION OF AN AVERAGE VECTOR. Let the observed vectors 
be xi 6 Bn, i ~ l,...,s and let the estimated variance-covariance n X n matrices of the 
observations be Qu i = l,...,s. Let the unknown average vector be a £ Stn and the 
variance-covariance matrix of the event be P. The model equation of the problem is 

f{x,a) = x~a=0 . (1) 

We define the least-squares value of a as the solution of the following constrained 
optimization problem. 

Minimize W = £ ( cfQr1^ + b^P'1^) (2) 
»=i 

subject to (3) 
f(xi + ci,a+bi) = zi + ci-(a + bi)>"Q,   i = l,...,s, w 

where c,- is the correction of the i-th observation and 6,- is the deviation of the i-th event 
(round) from the average a. 

To solve the minimization problem we introduce a modified objective function W 
using Lagrange multiplier vectors k{: 

W=±£ (cTQfhi + bfp-% ) ~ £ k? (*,. + Ci-a- bi)  . (4) 

We obtain a system of normal equations by setting equal to zero the partial derivatives 
of W with respect to c,-, 6t-, a and kt. The result is 
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Qr'ci-'ki = o, » = 1,. ■ 1* . 

P~% + ki = 0, 1 = 1,. 
■ .* , 

a 

1-1 
= 0, 

xi + ci ~ a ~~ h   — ° '       i = l,...,s   . 

Eliminating the kt we obtain the following simpler equation system 

i—i i—i 

6,-   =     P(Qi+P)-l{*i-a) ,       i = l,...,a  , 

Ci.   =-Qi(Qi + P)-1(*i-°) ,      f = l,...,5 

We also obtain 

I 
«-1 

i-l 

Wh - £ fefP-H,. = E fa - a)T( ft + F r1 F ( ft + P r1 fa - a) , 
t'-l i-l 

wc = t c?Qr\ = i fa - a)r( g«+/> r1 ft (ft+p r1 fa -«) - 
«*—i 

W = W6 + Wc = t fa - a)T (ft- + P)-1 fa - a) 

and the variance of weight one 

W . 

(5) 

(6) 

(7) 

(8) 

(9) 

..   . (10) 
-      n(.-l) 

Let the total variance-covariance matrix of the observed x{ be Rxi (including both, 
the measurement scatter and the event scatter). Then the variance-covariance matrix of 
a is (see eq. (6)) 

K = [t (ft+p r1}'1 E [ (ft+pr'R.i (ft+p)-1 ] [t (ft+p r1]"1-   (") 
i—l i—1 ,==1 

If we estimate as usual 

then it follows from eq. (11) 

247 



i-i      rA       ,i-i 
K> = v0[E(Qi + P)-i}- ={ZR?}-   . (13) 

The formulas (6), (9), (10) and (13) provide the general least-squares solution of 
the averaging problem (defined by eqs. (2) and (3)) if the Q{ and P are known. In 
practice such a situation is an exception, because in general one has estimates of the Q{ 

but P is not known. Therefore, vector averaging is commonly done assuming one of 
two special cases of the general solution. The special cases are obtained by postulating 
that either the Qt or P can be neglected in the general solution formulas. We now 
outline these special cases. 

In the first special case one assumes that P =0, i.e., that either the event scatter 
is negligible or that the estimated Q± already contain the matrix P. With this 
assumption we obtain from eqs. (6) and (13) the usual observation-weighted least- 
squares averaging formulas: 

a - [i gr1]"11 Qr\ > (") 
>=i       »=i 

6;=0    , • =■!,...,« \ 
•   1 15 

A. - «o [ t «r11"1 • (16) 
Usually the Q{ are positive definite matrices but in some applications they may be only 
semi-definite. Also, the sum of their inverses in eqs. (14) and (16) is not necessarily 
positive definite. The formulas are, however, generally valid if Moore-Penrose 
generalized inverses are used in both formulas. 

In the second case one assumes that the measurement errors are negligible in 
comparison to the event dispersion, that is, Q{ = 0 for all » == l.,...,s (or that all Q,- are 
equal and included in P). In that case eqs. (6) and (13) provide the formulas for simple 
unweighted averaging: 

(18) 

(19) 

To complete the calculation in this case we also need an estimate for P.  The usual 

S   l-l 

&,.«*,•-a  , ; = i,., ..,$ 

c,=0 , i = i,.. ..,5 

s 
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estimate is the sample covariance matrix 

P^aP^atbibT , (20) 
»-1 

where the factor a is determined such that v0, defined by eq. (10), equals unity. Let 

Then the factor is 

U-tixi-afp-'i^-a)  . (21) 

a =     . X     .   Ü . (22) 
n [8 — 1) 

With this value of a the variance-covariance matrix of the average, eq. (19), becomes 

« 
K = v0°P=        ,U    UP=   n     *     n  ZKii-'fP-H'i-*)}?-     (23) 

s n s (s — 1) n s (s — 1) «-1 

As in the first case, one can use the Moore-Penrose generalized inverse in eqs. (21) and 
(23) if the matrix P is not positive definite. 

In practice, estimates of the Q{ usually are available but P is not known so that 
the general solution formulas (6) cannot be used. If also neither of the two special cases 
can be justified on basis of additional information then one needs a method to estimate 
P from the observations before eqs. (6) can be applied. We propose in such cases to use 
for P the estimate (20) through (22). Because this solution makes use of the sample- 
covariance matrix P defined in eq. (20), we call the resulting o the sample-weighted 
average. The numerical computation of the sample-weighted average is complicated by 
the fact that the unknowns 6,- as well as a enter eqs. (6) on the right hand sides of the 
equations also through the definition of P. We propose the following computing 
strategy. First, we remove the explicit dependence of P on a by seeking a solution for 
fixed values of the scaling factor a, that is, by using the estimate (20) with a 
predetermined a. We solve this modified problem iteratively. We then vary a in a 
second iteration until it satisfies eq. (22). The complete numerical solution process 
consists of obtaining initial estimates for P and a, and an iterative improvement of the 
initial values. 

We initialize the computation with an unweighted averaging 

S   1-1 

h,i=*i-*>    1 = 1,-,*. (25) 

and obtain an initial estimate Px of P as follows 
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Po-ibo.ibli, (26) 
»-1 

s 

U.-XbliP^b^ , (27) 
i=i 

Next, we update the initial estimates (24) and (25) of a and &,-, respectively, and obtain 
an initial estimate for the scaling factor a: 

■«!-[£ (Qi + Pi)-1 }~l t (Qi + Pi)-1 *t , (29) 

*!,,- =-Pi (ft + Pir
1(«£-«l). «=l,--,5   , (30) 

Pi = ih,ii>li , (»I) 
s 

£ 
t=i 

s 

^ = E^^^  , (32) 

«---ATT- (33) 
71 (s — 1) 

The actual iteration during which we do update P but keep the value of a 
unchanged is defined by the following iteration formulas for Ar = 1,2,... 

n+i=«n, (34) 

«t+i - f t (Qi + P^r1 V11 (Qi + PMT
1
 *i , (35) tAQi + PM^Vt 

1=1 ,=l 

l>k+i.i=Pk+i(Qi+Pk+ir
l(*i-H+i)  -       1=1,.-,«  , (36) 

Pk+1 = tbk+ltiblhi . (37) 
»=i 

The variance-covariance estimate Ra of the average can be computed at each iteration 
step using eqs. (9), (10) and (13). Iteration end conditions can be expressed, for instance, 
in terms of changes of the elements of a and Ra. Experience shows that the average 
vector a becomes stationary after a few iteration steps whereas the elements of Ra need 
more steps to meet such convergence criteria. Convergence enhancement techniques 
were, however, not necessary in numerical experiments with this algorithm. 

The numerical result of the iteration depends on the fixed scaling factor a that 
was initially set by eq. (33).   We want to determine its value such that the variance of 
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weight one v0, defined by eqs. (9) and (10), equals unity. We achieve this by embedding 
the iteration by eqs. (34) through (37) in a regula falsi algorithm for the solution of the 
equation v0(a) = 1. For this algorithm, we enter the iteration (eqs. (34) through (37)) 
with the new a-value and the previous P as initial estimate, that is, the initializing by 
eqs. (24) through (33) is used only to obtain a very first approximations of a and P. In 
general, a solution of the equation v0{a) = 1 with positive or exists if vo(0) > 1, because 
v0 decreases with increasing a. If vo(0) < 1 then the estimated observational errors (the 
matrices Qt) are so large that the adjustment with a =0, i.e., with neglected P suffices 
to explain the data. The proper average in such cases is the observation-weighted 
average defined by eqs. (14) through (16). 

The final result of the iterations is the solution (6) and (13) of the general 
minimization problem, defined by eqs. (2) and (3), whereby the event variance matrix 
satisfies eq. (20) and v0 (defined by eq. (10)) equals unity. 

3. EXAMPLES. We present two examples. The first example is chosen to 
illustrate the main characteristics of the three types of averaging. In the second 
example we use actual data. 

In the first example we compute the average of three points on a straight line in a 
plane. The coordinates of the points are (0.5, 2.0), (1.5, 2.1) and (8.5, 2.8). We assume 
that the observational errors are equal for all three points and given by the following 
estimate of their variance-covariance matrix 

0 = | 2.0    2.0 ) 
y      I 2.0    2.0 J 

The matrix Q is not positive definite which means that the observational errors are 
distributed in a subspace of Ms, that is, along a straight line. In other words, the 
observational-error ellipses are degenerated into error bars. Figure 1 shows the data 
and the observation-weighted average. The coordinates of the average are (3.5, 2.3) and 
the variance-covariance matrix of the average is 

P   _ f 0.95792    0.95792 } 
Ä« ~ I 0.95792     0.95792  J 

The corresponding standard-deviation ellipse is again degenerated and shown in Figure 1 
as a dashed line. The location of the average point is reasonable but its estimated 
variance is not because th^e structure of the variance-covariance matrix that is computed 
with eq. (16) is independent of the observations and does not reflect the event scatter. 

Next we use the same data and compute their unweighted average by eqs. (17) 
through (23). The average vector is the same as in the previous calculation but its 
variance-covariance matrix is 
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Figure 1. Observation-weighted average. 

R, _ f   4.75 
~ I 0.475 

0.475 
0.0475 )■ 

The result is shown in Figure 2. The image of the one-standard-error ellipse of the 
average is an error bar in the direction of the scatter of the observations, because in this 
case Ra is independent of the observational-error variances. 

o z 

East,   m 
Figure 2. Unweighted average. 
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Finally, we compute the sample-weighted average.   The average vector again is 
the same as before. Its variance-covariance matrix is 

R  _ f 4.12682 
13567 

1.13567 
0.73027 

Figure 3 shows the corresponding one-standard-error ellipse. The figure also contains 
the correction vectors 6,- plotted as rays from the average point. The end points of the 
6,- are indicated by dots. In this example, all vectors &,- are parallel so that their end 
points are located on a straight line and the matrix P, eq. (34), is only positive semi- 
definite. The image of the ellipse representing P is the heavier segment of the straight 
line in the direction of the fy. The differences between the dots and the corresponding 
observations (inverted triangles) are the corrections c{. We observe that all corrections 
c,- and fc,- are in the direction of the corresponding error bars, as they should be. In this 
example the iteration with eqs. (34) through (37) became stationary after two steps. 
The initial scaling factor and the variance of weight one were, respectively, a = 0.250 
and v  =1.008.   After three regula falsi steps, we had the values a-0.252006 and 
v0 = 1.00006. 
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Figure 3. Sample-weighted average. 

In our second example we use actual observations of artillery burst-point 
coordinates. The observations x{ are three-dimensional vectors that specify the range, 
deflection and height of the burst. The vectors were obtained from simultaneous 
measurements of directional angles (azimuths and elevations) of the burst points from 
four observation towers. A least-squares reduction of the eight measurements of each 
observed round provided the three components of the burst location vector 2,- and an 
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estimate of its accuracy in form of the variance-covariance matrix $,-. The observation 
set in our example consisted of eight observed burst points from the same howitzer. 
The estimated accuracies of the observations varied widely between rounds and were 
smaller than the scatter between the burst points, but not negligible. Figures 4, 5 and 6 
show the observed points as inverted triangles and their sample-weighted average as a 
diamond. The figures also contain the projections of the one-standard-error ellipsoids 
corresponding to the estimated Q{. The standard-error ellipsoid of the average, defined 
by Rt, is plotted with a dashed line. The standard-deviation ellipsoid of a single shot, 
i.e., the dispersion of the artillery fire is defined by the matrix P and plotted with a 
dotted line. We note that contrary to the appearance in the plots P is not proportional 
to J?4: the relation between P and /?„ is given by eq. (13). The correction vectors b{ 

represent the deviation of the round i from the average and are plotted as rays from the 
average point, as in Figure 3. We observe that these corrections in general do not point 
in the directions towards the observations z,-, but in other directions such that both 
corrections, &,• and cit are in directions of large error estimates thus minimizing W, 
eq. (2). The initial estimate of the scaling factor was a =0.143 and the variance of 
weight one was v0 ~ 1.137. After four regula falai steps, the results were a — 0.176998 
and v0 = 1.00004. The iteration for a and 6,-, eqs. (34) through (37), required eight steps 
at the beginning and three steps at the end of the regula falsi calculations. 

D 

. \ 

*%. ^\ 
N"'*r^i,,sv^. -.\^'*-.. [ 

■20. <  -    ■ 

2400. 2500. 2600. 
Firing   range,   m 

Figure 4. Burst-point range and deflection. 

To illustrate the advantage of the sample-weighted average we show in Figures 7, 
-8 and 9 the usual observation-weighted average [eqs. (14) through (16) ) of the same 
observations.   We  notice that in  this example the observation-weighted average is 
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Figure 5. Burst-point range and height. 
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Figure 6. Burst-point deflection and height. 

completely useless: the estimated burst point is shifted far outside the cloud of 
observations. From an inspection of the figures, we conclude that this shift is caused by 
the high sensitivity of the location of the average to the estimated principal directions of 
observational errors. The variance of weight one was in this case v0 — 5998 indicating 
that measurement errors alone are not sufficient to explain the data scatter. 
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Figure 8. Observation-weighted range and height. 

4. SUMMARY. We have considered least-squares computations of vector 
averages. We assume that the observations in a n-dimensional space contain 
inaccuracies from two sources: observational errors and variations of the observable 
itself, that is, event scatter. Usually one of these error sources is neglected. If a simple 
unweighted average is computed then one assumes implicitly that the observational 
errors are negligible.  If an observation-weighted average is computed then the implicit 
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Figure 9. Observation-weighted deflection and height. 

assumption is that the event scatter can be neglected. Most often the event variation is 
not known and one has no grounds for using one of these special averages. If event 
scatter is known to exist we propose to use the sample-weighted average. It can be 
computed by an iterative algorithm that provides in addition to the average of the 
observed vectors with its variance, also an estimate of the variance-covariance matrix of 
the event. 

Applied to the computation of average burst points of artillery fire the sample- 
weighted averaging provides a burst-point estimate that is consistent with observations 
and their error estimates. It also produces a consistent estimate of the dispersion of the 

fire. 
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JIMP CHARACTERIZATION TEST 

CHARLES E. HEATWOLE 
RELIABILITY, AVAILABILITY AND MAINTAINABltnY DIVISION 

U.S. ARM* MATERIEL SYSTEMS ANALYSIS ACTIVITY 
ABERDEEN PROVING GKXHD, MD 21005-5071 

ABSTRACT. Tank jump is a lime-understood - but major - element of tank gun 
accuracy. Current tank gunnery doctrine utilizes a computer correction factor 
far the tank fire control computer to correct for the mean jump of each tank 
munition. 

Numerous accuracy tests of U.S. tank munitions have repeatedly indicated 
that several factors have a highly significant effect en jump. However, no 
testing has been done to characterize the otxasi<»»-to-occasion variation in 
jump when these factors are held constant. The U.S. Army Materiel Systems 
Analysis Activity (AMSAA) has proposed such a test. The goal of this test is 
to improve our understanding of jump in an attempt to determine if mare 
effective correction factors can be developed. 

1. INTRODUCncN. Identification of the various factors affecting weapon 
system accuracy has been a longstanding problem. Ideally, the primary factors 
can be identified and either compensated for or eliminated. For tank munitions, 
the fire control computer system corrects for certain known variables sud» as 
wind, temperature, etc. The remaining error not specifically accounted for 
is referred to as jump. Until approximately 1981, individual tank zeroing 
was performed as a means for compensating far this remaining error. However, 
since then, the fleet zero concept has been adopted. 

Under the fleet zero concept, instead of an individual correction factor 
being determined for each tank, a cannon correction factor is used by all tanks 
for a given ammunition type. This standardized correction factor is referred 
to as the "Computer Correction Factor" (CCF). To determine a CCF for each 
munition, accuracy testing is performed under a variety of tank firing conditions. 
Far each round fired, jump is ^al^'l^fr«* from the data collected. Essentially, 
the mean jump is then used as the CCF. This value is used by every tank in 
the fleet as a final add-on correction to the fire control conputer's ballistic 
solution computed immediately prior to firing. 

The utilization of the CCF/f leet zero concept is predicated on the assumption 
that jump is a fixed bias (i.e., is consistent in magnitude from one occasion 
to another). However, analyses of variance performed an jump data for various 
tank munitions fired over the past few years have repeatedly indicated that gun 
tube and ammunition temperature (even after application of the fire control 
correction far temperature) are highly significant influences on jump, and that 
several other factors sc*M»HTnes have a significant effect. Hence, statistically, 
jump is not a fixed bias. This has prompted the question as to what extent 
jump varies from exxasion-to-occasion without any intentional tank or tempera- 
ture-related changes. That is, how much variation in jump occurs from occasion 
to occasion when the only intended change is disassembly of the test setup 
upon completion of an occasion, and re-setup to start a new occasion? 
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It is planned that there be approxinately two weeks between replications, 
with the primary difference between replications being disassembly of the 
test setup after completion of a given replication, and re-setup upon starting 
the next replication. It is also intended that the two tanks used in the 
test be dedicated solely to this test until completion; i.e., there should be 
no other firings or mileage accrued beyond the mileage required for normal 
travel to and from the weapon shops, to minimize the chance of extraneous 
influences affecting the tanks between replications. 

3. ANALYSIS. Of the three factors, the effect of replication on jump is the 
greatest concern, and the effect of ammunition lot is the next factor of 
interest. There has been extensive discussion as to whether replication, 
lot, and tank should be considered fixed or random effects. In all cases, it 
is desired that inferences can be made regarding the population. Far 
example, the estimate of replication effect would be considered representative 
of the general cccasion-to-<>ccasian variability in jump within constant firing 
conditions, which implies that replication should be treated as a random 
factor. The same is true for tank and lot number. However, each tank (and 
its tube) is being selected from those available at Aberdeen Proving Ground, 
and not randomly from the worldwide fleet. The lots will be selected from a 
group of approximately thirty lots available within the U.S. (although they 
have been previously stored under various conditions overseas). Thus, tank/ 
tube and lot number do not seem to be either purely random or purely fixed by 
strict definition. It is currently planned to treat these as random factors, 
because of the desire to draw inferences to the population. However, it is 
also possible that the analysis should be performed both ways (i.e., treating 
them as fixed, and treating them as random) to determine if the results are 
significantly affected. 

The breakdown of degrees of freedom far this experiment is: 

FACTOR rasraiTCfi f>F FREEDOM 

Tank (T) 1 
lot (L) 4 
Replication (R) 3 
TxL 4 
TxR 3 
LxR 12 
TxLxR 12 
Error SO 
TOTAL 119 

This breakdown is based on analysis of the experiment as a randomized block 
design (i.e., disregarding the incomplete randomization within replications 
and the associated possibility of a day effect being confounded with tank 
effect). If there is concern about the possibility of a day effect within 
replications, the results for tanks A and B could each be analyzed separately 
using the following degrees of freedom breakdown: 

FACTOR DEGREES P*1 TOFTTTM 

Lot (L) 4 
Replication (R)               3 
LxR 12 
Error 40 
TOTAL 59 
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A test has been designed by the U.S. Arny Materiel Systems Analysis Activity 
(AMSAA) to address this question. The objective of this clinical presentation 
is to describe the proposed test and solicit advice regarding the design and 
the asaoni atari analyses. 

2. TEST DESCRIPTION. The following test matrix has been proposed for this 
test: 

JUMP CHARACTERIZATION TEST MATRIX 

OCCASION 

JI_ HI  EL_     ' 
Tank Tank Tank Tank 

Ammo Lot AB &SAB.&B 

1 33333333 
2 33333333 
3 33333333 
4 33333333 
5 33333333 

This experiment can be described as either a two-factor experiment with re- 
plication, or a three-factor experiment with replication as one of the factors. 
The two basic factors are ammunition lot number and tank, with five lot« and 
two tanks planned for the test. Each lot will be tested with eacb^tai* 
(3 rounds fired per lot/tank/replicate). This factorial scheme is replirated 
four times. Ideally, the experiment would be conducted in a randomized block 
fashion, with the order of the lot/tank combinations randomized within each 
replicate. However, because of the extensive setup time required whenever a 
different tank is to be fired at the specially-instrumented test range used 
far tank accuracy testing, it is strongly preferred that all 15 rounds scheduled 
far a given tank in a given replication be fired once that tank is set up. 
Thus, the test groups from tank A would not be co-mingled with those from 
tank B. Randomization within a replication would be limited to randomizing 
the firing order of the fifteen test rounds within each tank. Once a tank is 
set up far firing, the fifteen rounds would then be fired within approximately 
2 1/2 to 3 hours, with the stipulation that no intentional breaks be allowed 
in the firing revftsnre beyond the usual amount of time required to prepare the 
next round for firing. Tk^ setup and firing time for one tank (within a 
replication) would require the majority of a work day. Therefore, two days 
will be required to complete each replication, with tank A fired on one day 
and tank B on the other. It is intended that these days be consecutive to 
minimize the possibility of day-to-day influences. The order of firing far 
tanks will be randomized from one replicate to another (e.g., Tank A can be 
fired on Day 1 in some replicates and Day 2 in others). 

The sample size of three rounds per replication was dictated by the 
availability of no more than 28 rounds per lot far this test. The proposed 
test matrix would utilize 24 of the 28 rounds, leaving four per lot for use 
as replacement rounds to be fired if data are lost far ary of the test rounds, 
or if it is necessary to repeat an entire day's firings to achieve two con- 
secutive firing days. Previous tank accuracy test data have indicated that 
three-round groups are generally sufficient, and a analler group size is 
undesirable. 
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For dither method of analysis, plots of the data will be prepared to allow 
for quick cheats of hcnoscedasticity and evidence of trends. 

If the analysis of variance of the jump data indicates the occurrence of any 
significant influences, similar analyses of variance will be performed on the 
lower-level data elements used to compute jump. These additional analyses will 
be performed to help identify the significant conponents of jump. 

4. OUBSITCNS FOR DISCUSSION. The following questions are requested as dis- 
cussion topics relative to the proposed test design and analyses: 

a. Given the aranunition hardware limitations of five lots, 28 rounds per 
lot, and the daily firing time constraints, is the proposed design a reasonable 
approach for investigating ocxasicii-to-occasion jump variation? Is there a 
better (more informative car mare conclusive) approach? 

b. Given that this design and associated firing procedure are used, is 
analysis of it as a randomized block design affected because of the incomplete 
randomization within replications? 

c. Should the analysis be approached in a different manner due to the 
possibility that a day effect could be confounded with a tank effect? 

d. Is it appropriate to treat the factors as random factors? 
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Abstract 

The Markov chain simulation method has become a powerful computa- 
tional method in Bayesian analysis. The success of this method depends 
on the convergence of the Markov chain to its stationary distribution. We 
give two carefully stated theorems, whose conditions are easy to verify, that 
establish this convergence. We give versions of our conditions which are sim- 
pler to verify for the Markov chains that arise most commonly in Bayesian 
analysis. 

Key words and phrases: Bayesian. Poisson regression; calculation of posterior dis- 
tributions; ergodic theorem; Markov chain simulation method. 

1    Introduction 
Let i be a probability distribution on a measurable space {X,B). The Monte 
Carlo Markov chain method is a technique for estimating characteristics of it such 
as ir(E) or f fdir where E € B and / is a bounded measurable function, and 
which is useful when r is too complex to describe analytically. The idea is very 

* Research supported by National Science Foundation Grant DMS-92-04938 
f Research supported by Air Force Office of Scientific Research Grant 90*0202 
* Research supported by Army Research Office Grant DAAL03-90-G-0103 
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straightforward. We construct a transition probability function P(x, ■) with the 
property that it has stationary distribution ir, i.e. 

7r(C) = / P(x, C)ir(dx)  for all C € B. (1.1) 

Then, we generate a Markov chain {Xn} with this transition probability function 
as follows. We fix a starting point x0, generate an observation Xi from P(x0,-), 
generate an observation X2 from P(Xi,-), etc. This produces the Markov chain 
io = XQ,Xi,X2,.... We use this construction in one of two ways. Either we 
discard an initial segment XQ, Xi,X2,. ■. ,Xr of the Markov chain, in which the 
chain has not yet converged to its stationary distribution, and retain the rest of 
the chain, or we independently run a large number of chains and for each retain 
only the last observation. In either case we we use the observations that we have 
kept to obtain empirical estimates of those features of ir that are of interest. 

Implicit in this method is the assumption that the chain converges to its sta- 
tionary distribution, for a wide class of starting points x0. Indeed, one can easily 
give examples of Markov chains that do not converge to their stationary distribu- 
tion from any starting point. Thus, to establish the validity of the method, it is 
crucial to obtain results that give conditions which imply convergence of the chain. 

The Markov chain literature already contains many results that give conditions 
under which the Markov chain converges to its stationary distribution for a class 
of starting points x0 which have probability one under t (this condition is called 
ergodicity). Unfortunately, when one comes to apply these results, one immediately 
notices that in statistical applications, the conditions of these theorems are virtually 
impossible to check. 

In our work we have obtained two theorems (Theorems 1 and 2 below) that 
assert ergodicity of the chain under conditions that are extremely easy to verify in 
a wide range of problems that are likely to arise in Bayesian statistics. These the- 
orems pertain, roughly, to the two modes of using the Markov chain construction. 
Before explaining our theorems, it is useful to give an idea of the wide scope of the 
problems that can be approached via the Monte Carlo Markov chain method. 

There are many ways to produce a transition function satisfying (1.1). Meth- 
ods include the Metropolis algorithm and its variants, and the so-called Gibbs 
sampler. This last method appears to be the one that is the most widely used 
in Bayesian statistics, and we now proceed to describe it. This algorithm is 
used to estimate the unknown joint distribution x = x^i) X(P) of the (possi- 
bly vector-valued) random variables (X(1),... ,X(p)) by updating the coordinates 
one at a time, as follows. We suppose that we know the conditional distribu- 
tions nX(i)\{xu)j4i}, i = 1,... ,p or at least that we are able to generate observa- 
tions from these conditional distributions. If Xm = (X£>,. - -,X$) is the current 
state, the next state Xm+1 = (X^,... .JfJii) of the Markov chain is formed 
as follows. Generate A£1I from *xwl{xu) ^}(-, Xg\ ..., X$), then X^ from 

265 



*xW\{Xi))j*2}(Xlm+i),;Xg\...,XM), and so on until X%U is generated from 

*xip)\{XM i*p}(x{m+i)i • • •' X(m+ly ")• If P is the transition unction that produces 
Xm+i from Xm, then it is easy to see that P satisfies (1.1). 

We now give a very brief description of how this method is useful in some 
Bayesian problems. We suppose that the parameter 9 has some prior distribution, 
that we observe a data point Y whose conditional distribution given 9 is C(Y \ 9), 
and that we wish to obtain C(9 j Y), the conditional distribution of 9 given Y. It is 
often the case that if we consider an (unobservable) auxiliary random variable 2", 
then the distribution xs,z ~ £{9, Z \ Y) has the property that TVQ\Z (= C{9 | Y, Z)) 
and irz\e (= C(Z \Y,9)) are easy to calculate. Typical examples are missing and 
censored data problems. If we have a conjugate family of prior distributions on 
9, then we may take Z to be the missing or the censored observations, so that 
T$\Z is easy to calculate. The Gibbs sampler then gives a random observation with 
distribution (approximately) £(9,Z\Y), and retaining the first coordinate gives 
an observation with distribution (approximately) equal to C(9 \ Y). 

Another application arises when the parameter 9 is high dimensional, and we 
are in a nonconjugate situation. Let us write 9 = (9U ..., 9k), so that what we wish 
to obtain is ireu...,ek- Direct calculation of the posterior will involve the evaluation 
of a k-dimensional integral, which may be difficult to accomplish. On the other 
hand, application of the Gibbs sampler involves the generation of one-dimensional 
random variables from x^^ j#y. The generation of random variables from a one- 
dimensional distribution is in general much easier than from a multidimensional 
distribution; very often special tricks can be used. We illustrate this with an ex- 
ample in Section 2 below. In addition, we note that the distribution now, j^y is 
available in closed form, except for a normalizing constant. There exist very effi- 
cient algorithms for generating random variables from such a distribution, provided 
the distribution is unimodal; see Zaman (1992). 

2    Illustration of the Markov Chain Simulation 
Method: Bayesian Poisson Regression 

As a typical application of how the Gibbs sampler helps in high dimensional prob- 
lems, we consider a model involving Bayesian Poisson regression. This model is 

Yi ~ Poisson(Ai),   A,- = £j=l ztjft,   i = 1,2,..., n, 

where the ii;'s are non-negative covariates, and where the prior distribution on 
the ßj's is a product of Gammas. In this case, the likelihood function is 
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-   (in! y2\... yn\)-1 exp ( - £ L *üß) ft (E Mi)* 

and the joint density of the ß/s is given by 

fß(ßij2,...,ßP)   =   f[S-J]'~leM-W,) 
j=i L \ai) 

oc   exp(-£&iß)n/?r\ 

where a3 is the shape and bj is the scale parameter for the distribution of ßj, 
j = 1,2,... ,p. The posterior joint density of the ßj% given the data, is therefore 

T(Ä,A,...f/9p) a expf-t^n^r'fnE^^)' 

where v,- - &j + E?«i *f>, j = 1,2,... ,p. To determine the posterior joint density 
of the ßj's exactly, the constant of proportionality needs to be determined,. This 
requires high-dimensional integration. However, the Gibbs sampler can be used if 
we know the conditional distributions of any ß-% given the rest of the ß'jS and the 
data. 

To compute the conditional density of any ßk, k = 1,2,... ,p, given the rest 
of the /?j's and the data, we proceed as follow. For each /, 1 < I < p, let Si = 
{1,2,... ,p} \ {/}. Then for each k, the density of /?fc, conditional on all ßj, j € 5jt, 
and the data is the discrete mixture of Gamma densities 

fßtäJesM <* fit"'1 eM-Vkßk) fl(ci + XikßkT, 
t=i 

where c, = T,jesk 
xnßi' Let m = YZ=i Vi and write 

n m . 

fite+ **A)K «!>(*)#, 
»=1 (=0 

where we explicitly show the dependence of the coefficients on k. Then, 

fßMiesM*   IZon(*)ff*+1-1 exp(-«*A) 

and we readily recognize that 
m 

fßk\0},J€Sk(ßk)     =    XXfck»fc+!,iJÄ)> 

where fifP>9(i) denotes the gamma density with shape parameter p and scale param- 
eter q in x, and pj(Jfe) = rj(lfc)r(ofc + 0/ufc*+'- Tiie Pi(*)'s «« the discrete mixture 
probabilities. 
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3    Convergence Theorems 

Before stating our theorems, we will need a few definitions concerning Markov 
chains. Let Pn(x,-) denote the distribution of Xn when the chain is started at 
x. Also, for a set C € B, let T(C) = inf{n : n > 0, Xn € C} be the first time 
the chain hits C, after time 0. Finally, for any subset I of the positive integers, 
g.c.d.(J) will denote the greatest common divisor of the integers in X. 

Theorem 1 Suppose that the Markov chain {Xn} with transition function P(x, C) 
has an invariant probability measure x, i.e. (1.1) holds. Suppose that there is a set 
A € B, a probability measure p with p(A) = 1, a constant e > 0, and an integer 
n0 > 1 such that 

T{X:P;(T(A)<OC)>0} = 1, (3.1) 
and *• J 

Pn°{x, ■) > ep{-)  for each x € A. (3.2) 

Suppose further that 

g.c.d.im > 1 : there is an em > 0 such that supPm(x, •) > £mp(-)} = 1-   (3.3) 

Then there is a set £>0 such that 

ir(DQ) = 1   and sup \F»(x, C) - T(C)| -» 0  for each i € DQ.        (3.4) 

Theorem 2 Suppose that the Markov chain {Xn} with transition function P(x, C) 
satisfies conditions (1.1), (3.1) and (3.2). Then 

no-l 

„   I nO   ,-=0 

and hence 

sup 
I    no-l 

- J2 Pmno+T{x,C) - v(C)\ -+ 0   asm^oo   for [7r]-aimost ail i,   (3.5) 

sup I- V PJ(x, C) - ir(C)| -» 0   asn^oo   for [7r]-aimost aii x. (3.6) 

Let f(x) be a measurable function on {X,B) such that j Tr{dy)\f(y)\ < oo. Then 

P^J2 f(Xj) ~* J ^(dy)f(y)]j = 1 for [^almost all x (3.7) 

and 

i J2 E*(f(Xj)) -* [ ir(dy)f(y) = 1 for [^-almost aii x. (3.8) 
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Theorem 1 requires condition (3.3), while Theorem 2 does not. Theorem 2 
states that if condition (3.3) is violated, one can still apply the Markov chain 
simulation method, except that one has to work with averages of dependent random 
variables instead of running a large number of independent chains and working 
with an (approximately) independent sample. These two theorems are proved in 
Athreya, Doss, and Sethuraman (1992), where it is also shown that these are the 
weakest possible conditions that will ensure convergence of a Markov chain for a 
set of starting points having probability one under the stationary distribution. 

There are already many theorems that give conditions that guarantee ergod- 
icity of Markov chains. See the discussion in Section 1 of Athreya, Doss, and 
Sethuraman (1992). Most of these theorems are stated under two general classes 
of conditions. Conditions in the first class involve verification of a "recurrence 
condition" which is much stronger than our condition (3.1). Conditions in the sec- 
ond class of involve the stationary distribution of the chain. Since this stationary 
distribution is unknown, these conditions are difficult to verify. In contrast, our 
theorems are stated under conditions that involve only the transition function, and 
thus are, in general, easier to verify. 

Theorems 1 and 2 pertain to arbitrary Markov chains. As we mentioned earlier, 
the Gibbs sampler is the most commonly used Markov chain in Bayesian statistics. 
We now give a result that facilitates the use of our theorems when the Markov chain 
used is the Gibbs sampler. We use the notation of Section 1, and assume that for 
each i, the conditional distributions KxMxM j&} ^ave dens^es> say PXi\{XW &%}> 
with respect to some dominating measure pi. 

Theorem 3 Suppose that for each i = l,...,k there is a set A, with pi{Ai) > 0, 
and a 6 > 0 such that for each i = 1,..., k 

P*|{x(i)W»(1,,.-,*(*))>0 (3.9) 

whenever 

x(1) € Alt..., i(i) € A, and x(,+1),..., x{k) are arbitrary, 

and 
■ Px,\iXU) j*}(*(1), • • •, *{k)) > 8 whenever x& € Aj, j = 1, -. ■, k. 

Then conditions (3.1) and (3.2) are satisfied with n0 = 1.   Thus, (3.3) is also 
satisßed, and the conclusions of Theorems 1 and 2 hold. 

We note that condition (3.9) is often checked for all x(1),..., x(i). 
This theorem is immediate for the case k = 2. For the general case the proof 

follows by induction. 
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Abstract 

This report identifies potential errors in computing high statistical reliability for a required component 
fatigue life. The reliability values were determined from application of a joint probability density (JPD) 
analysis used in a American Helicopter Society round robin safe life problem. 

In the analysis, normal probability density functions(PDFs) were assumed for both the material 
strength and the spectrum load values. The PDF model parameters were varied and the PDFs were 
slightly modified (contaminated) in order to examine the sensitivity in computing high statistical reli- 
ability when uncertainties exist in assuming the PDF. Lower tails of the PDFe were also modified by 
truncation, independent of the model contamination, in order to determine the relative influence on re- 
liability from tail modifications as compared with the parameter uncertainties and contamination. The 
stability of statistical estimates of the extreme tail quantiles and their corresponding probabilities as a 
function of sample size were examined for a generic distribution. 

Assuming a PDF to represent load or material strength is a substantially more critical issue than 
accurate representation of the extreme lower tail of the PDF when computing high reliability. Sampling 
trials for extreme tail quantiles and reliabilities indicate that unstable values can result from sample 
sizes of 100. 

The primary conclusion from these analytic results is that the computation of a high statistical 
reliability may have little or no association with actual engineering high reliability. 
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INTRODUCTION 

The use of a quantitative high reliability requirement for a helicopter component fatigue design 
has received considerable attention recently. The U. S. Army established a requirement of .999999 
("six nines") reliability for dynamic components in its most recent helicopter development1. Sub- 
sequently, the American Helicopter Society Subcommittee on Fatigue and Damage Tolerance, con- 
ducted a round robin study of high reliability fatigue methodology applied to a simple structural 
element2. A review of the round robin3 noted difficulties in the reliability analysis. Each participant 
used a different fatigue curve and fatigue limit variability which resulted in significantly different 
fatigue lives, for the six nines reliability requirement. A recent fatigue analysis by a helicopter 
manufacturer4 found that " reliability is very sensitive to changes in the population mean strength 
and scatter". In addition Reference 4 notes "the conclusions of this study are not fully applica- 
ble to actual fleet management due to the presence of statistically indeterminant variables such as 
degraded or non-conforming components". 

The present authors in previous study, have investigated the sensitivity of high reliability com- 
putations from a stress-strength model3 to uncertainties in the identification of the probability 
density functions(PDFs) in the model. The uncertainties are associated with the selection of com- 
peting parametric forms( e.g, normal, log-normal, Weibull, etc.) or with the undetected presence 
of contaminated populations. Contaminated distributions could be bimodal, caused by degraded 
or non-conforming components, or could be the result of by unexpected loading anomalies. The 
results from Reference 5 showed that high reliability estimates can vary substantially even for "al- 
most undetectable" differences in the assumed stress and strength PDFs. The authors have also 
investigated the sensitivity of safe life fatigue reliability of a simple structural element loaded by 
a simplified spectrum to a variety of uncertainties6, demonstating that a small amount of uncer- 
tainty in the parameters of the load or strength PDF resulted in a substantial reduction in the high 
statistical reliability values for a specified lifetime of the component. 

The round robin review, Reference 3, also expressed a concern for the effect of inaccuracies or 
truncations of the tails of the distributions. An investigation of the truncation of known normal 
PDF was proposed in order to determine an "acceptable degree of truncation" in computing high 
statistical reliability. Apparently, this determination would be expected to indicate the portion of 
the tail region in which an accurate representation of the PDF is not required. 

In this report the AHS round robin fatigue problem and its methodology, Reference 2, will 
be used to investigate the cited issues by considering: a) The effect of small changes in the PDF 
parameters on the reliability-life relationship, b) The influence upon reliability of the consideration 
of PDFs which are contaminated, using the methods of Reference 5, by bimodal effects, c) The 
"true" reliability associated with fatigue lives which have been obtained by satisfying an "apparent" 
six nines reliability based on normal PDFs which have been truncated in the extreme tail region, 
d) The relative influence on high statistical reliability of parameter uncertainties, contamination 
and truncations of the PDF. The consideration of issues involving the extreme tails of the PDFs 
requires an accurate measure of the truncation point locations, which is difficult to achieve, since 
sufficient amounts of data is usually not available. In practice, truncation point locations would be 
estimated from small data sets of load or strength measurements. The stability of the statistical 
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estimates of the extreme tail quantile and probability values will be investigated based on sampling 
simulations of a generic normal PDF. 

These results will be assessed to indicate the potential role of the PDF tail truncation analysis 
in providing conclusive information on the acceptability of PDF modeling and whether a quantified 
.96 reliability provides a meaningful measure which correlates with levels of structural integrity. 

FATIGUE LIFE COMPUTATIONS 

The following standardized fatigue life computation procedures were obtained from a round 
robin study conducted by the AHS, Reference 2. The form of the S-N curve is, 

N = C(S*-SE)D, (1) 

where N = number cycles to failure; SE = fatigue strength for very large N values, for mini- 
mum stress equal to zero; 5* = effective maximum cyclic stress, for minimum stress equal to 
zero »equivalent to spectrum stresses; C and D are parameters from regression least squares analysis. 

In order to apply the S-N curve in Equation 1 using the actual operating load spectrum, the 
following relation for S* is required: 

c.      a • Su- Si  ft) 
Su-a-Sm+a-SL/2- 

This equation represents a form of the Goodman correction factor used in Reference 2, which 
converts a defined spectrum mean stress and stress range to an equivalent stress range which causes 
equal fatigue damage from zero to specified S* value. 5U represents the ultimate strength of the 
material. Sm and Si represent the mean and range respectively of the nominal stress from a rainflow 
count obtained in Reference 2, of the standardized Felix 28 spectrum as tabulated in Table 1. The 
a value is a scaling parameter for the spectrum load values SL and 5m representing the effective 
load scaling, over the lifetime of a component. This parameter can provide changes in the baseline 
spectrum load in order to account for differences in usage, pilot technique, weather, weight, etc. 

Let the fatigue life Nv represent the number of passes prior to the component failure. Then 
from Miner's Rule, Reference 6, 

NP = IfDF (3) 

where, 

AP-JA W 
The n(k)s represent the number of cycles for a specific k value and NK represents the total number 
of spectrum load values from Table 1. The N(k)s are the results from Equation 1. 
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RELIABILITY AS A FUNCTION OF LIFE 

The following procedures suggested in Reference 1, were applied in order to obtain high relia- 
bility(R) estimates at a specified lifetime. In the analysis the unreliability R is initially determined 
from application of a discrete joint probability density(JPD) function. The function provides proba- 
bilities associated with the simultaneous occurence of both a spectrum load and a material strength 
value. In the analysis both the spectrum load scaling factor a and the material fatigue strength s, 
where the mean fi3 = SE, are represented by a normal PDFs as shown in Figure 1. This represen- 
tation allows for application of the JPD analysis in addition to providing for potential variability 
in loading and material strength. The scaled version of the spectrum load (aS^,) is only involved 
in computing N in Equation 1 but not the R estimate. The R compututation involving only a 
and s in the JPD computation is therefore simplified. Substitution of a for OSL is valid since both 
are normally distributed and their probability computuations are independent of location. That is, 
the scaled and unsealed version of the load will provide identical probability estimates with respect 
to the JPD computation. Since the "event", of identifying a particular value of a with a compo- 
nent, is independent of the "event" of using a component with particular fatigue strength, the joint 
probability that a = a,- and s = s,- occurs simultaneously can be written as, 

P(a = a,-,s = Sj) = P{OL = on) • P(s = Sj), (5) 

where i - 1,2,3, ...,nx and j = 1,2,3,... ,n2. The rii and n2 represent the number of events 
for load and strength respectively. The regions Aa and Aa where the events occur which produce 
higher probability of failure are bounded by the normal PDFs as shown in Figure 1. The load and 
strength functions are, 

/.(a) = _i=e-M^)', (6) 
craV27r 

and 
AM =      *    e-«^)*, (T) 

cr,V2T 

where (/Ja,cra) and (/z„<r,) are the population means and standard deviations for the load and 
strength, respectively. Referring to Figure 1 and Equation 5, the JPD can be written as 

Pi,i = P.rPai, (8) 

where, 

Pai   -   Aaj./.fSi), (9) 
P..   =   Asrf,(s-), (10) 

and i = 1,2,3,..., nx and j = 1,2,3,..., n2. After determining the joint probability values Pti 

from Equation 8, the corresponding a and s associated with these probabilities are introduced in 
Equations 2 and 1 respectively. This determines a specific number (iVy) cycles to failure of the 
material for the corresponding probability (P^) of the joint occurance of ö,- and $j. The lifetime 
estimate Np from Equation 3 for the joint a4 and Sj event is obtained from the following application 
of the spectrum load data {SL(k)}™, {Sm(k)}™ and {n(k)}?K in Table 1, where NK is the number 
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of spectrum loads. The damage fraction for a specified event can be determined from Equation 4 
and written as 

where n(k)s are the spectrum load cycles corresponding to the original tabulated loads SL(k). From 
Equations 3 and 8, the lifetime values are then computed from 

NP(ij) = 1/DFij (12) 

These values correspond to the joint probability that a = a, and 3 = SJ. The above process is 
repeated M = nin2 times,where rtt and n2 represent the number of mesh points associated with the 
tail region of the PDFs in Figure 1. All combinations of i and j are introduced in order to obtain 
paired P,-j and N,(ij) values. Ordering only the Np values from the smallest to largest and retaining 
their original corresponding P,, probabilities describes a discrete PDF representing the component 
probability of failure Pf(t) as an array of lifetimes {Np(t)}?, where t is an integer defining the 
ordering of the Np values. See a graphical display of a PDF in Figure 2. In order to obtain the 
unreliability R for a given h in Figure 2, a cummulative density computation is required. This is 
accomplished by selecting an ordered value from Np and computing the sum 

Note, the reliability R can be obtained from R = 1- R and the lifetime values can be determined 
from a given R. 

CONTAMINATED PROBABILITY DENSITY FUNCTIONS 

In order to illustrate the sensitivity of high reliability calculations to small deviations from the 
assumed models, the approach taken in Reference 5, is applied. Consider the situation where with 
a high probability of 1 - e, samples are obtained from a primary PDF, while with probabilty e 
samples come from a secondary PDF. This bimodal probability model is a type of a general class 
referred to as a contaminated models. The secondary component is called the contamination and 
the probability e is the amount of contamination. An example may help clarify this idea. Consider 
the situation where 99% of the specimens are obtained from a population of "good" specimens while 
the remaining 1% of the time consistently lower strength measurements are obtained, either due 
to manufacturing defects or to faulty testing. The primary PDF would correspond to the "good" 
specimens, the contamination would represent the distribution of flawed specimens, and the amount 
of contamination is c = 0.01. The following procedure is introduced in order to examine the effects 
of computing high reliability values when uncertainties exist in selecting the PDFs for the joint 
density computations. Initially, values are obtained from the JPD computation using PDFs /„ and 
U in Equations 6 and 7. Another R value is then obtained by applying the PDFs with a small 
amount of contamination e. 

The /, PDF with variance contamination for the strength data is written as, 

& = (1 - «)/.(*».. °\) + «/-01« k^ (U) 
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where pa and a, are defined in Equation 7, kx is a scaling factor and 100c is the percent contami- 
nation. A similar contaminated distribution for fa representing load a can be written as 

!L = (i - *)Mi*a, O + «/.0*., h2al), (is) 

with scaling factor kx and //a and cra obtained from Equation 6. Variance contamination produces 
effects which can be considered to represent uncertainties associated with the selection of competing 
PDF models. 

A strength distribution with mean location contamination is 

/£ = (i - «)/.(/*., O + </.(M. ± **».,<va). (16) 

where k2 is a scaling factor for pit and the sign determines which tail of the function is to be 
contaminated and at*

2 is the variance for fit ± k2a,. The contaminated function for load a can be 
determine in a similar manner. The location contaminated PDF can represent the rare occurance 
of exceptionally high loads or the unusually low material strength of a degraded or non-conforming 
component in computing the reliability. For e = .01 and &i = 4, graphical results in Figure 3, show 
an almost undetectable difference between the original normal PDF and the contaminated one. A 
linear relationship to obtain R from the JPD function application can be obtained by combining 
both contaminated and uncontaminated functions such that, 

BT = (1 - Cl)(l - £2)i*oo + «i(l - ea)Äio + e2(l - eJRm + WiRn, (17) 

where 100ex and 10(k2 are the percent contamination in the a and s distributions and Rmn represents 
reliabilities obtained from contaminated conditions designated by m and n. If m,n = 0, then there 
is no contamination. If m = 1 and n = 0 then fa is contaminated. If m,n = 1, then both /„ and /, 
are contaminated. For example, if there is contamination of the strength PDF with respect to the 
variance then, 

R' = (1 - £2)Äoo + eaÄoi- (18) 

The iCn values are obtained from H in Equation 13. This procedure provides an effective approach 
for demonstrating the effects of PDF uncertainties in determining high R values. 

MODIFYING TAILS OF THE PDFS 

A modification of the fa and /, PDFs' upper and tower tail regions respectively was introduced 
in the analysis to investigate truncation effects as suggested in Reference 3. A proposed modifica- 
tion7 is shown in Figure 4. The lumping method of truncation shown in the figure was selected so 
that the area under the modified PDF remains equal to one. This was accomplished by determining 
the area under extreme tail regions associated with the probabilities P0ni and PSryi obtained from 
Equations 20 and 21. These areas were lumped at the truncation points zx and z2 for a and s and 
the reliability RL values were determined from Equation 13, with the lumped /„,/,. A comparison 
was then made between lumped and unlumped results in order to determine if the effects of the 
uncertainties in the extreme tails are significant in computing high R values. The modification also 
represents a substantial difference in the lower tail region when compared with the original PDFs. 
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The R computation using the lumped PDFs, in Figure 4, is the same as that described previously, 
except in Equation 8, 

where, 
Pami = f~ f. ■ da, (20) 

ptni=r f. • *, (2i) 
J-oo 

and zl ä fia + XiCTc, z2 = n, + A2<r„ are the truncation points of the PDFs shown in Figure 4. The 
fa and /, PDFs are defined in Equations 6 and 7. The R computation procedures are then applied 
using the newly defined Pani and P3nj values. 

PDF PROBABILITY AT TRUNCATION POINTS 

The lumping procedure described previously was introduced in order to determine the effects 
on the R values from modifications to the extreme tail of the PDFs. 

In applying Equations 20 and 21, it is assumed that the PDFs and the truncation points zx 

and z2 are known exactly; which is usually not the case for engineering problems involving material 
strength or loading measurements. Since the accuracy in estimating the truncation point locations 
is essential in determining the importance of correct extreme tail representation in obtaining high 
R values, the following study was performed involving determination of the reliability and quantile 
values at selected truncation points as a function of sample size. Quantile values of /, can written 
as, 

Sq = p,-K.<r„ (22) 

where /*, and <rs are known mean and standard deviation of /,. The K values can be selected to define 
points where truncation may be introduced in the high reliability computation. Unfortunately, the 
Us and a, values are not known sufficiently well for an accurate measurement of Sq unless very large 
data sets are applied. 

The following simulation process examines the sample size(n2) effects in computing the trun- 
cation points. In the simulation process, a n2 set of st normally distributed values are selected 
from 

3t(i) = fia(l + v3-Qi),i = 1,2,3,...,n2 (23) 

where the Q,- values are obtained from a standard normal distribution with p, = 100 and vt — .10. 
The v„ value is the CV = <7,//*, and n, is the population mean. From the st values the mean st 

and variance VAR(s() are determined. An estimate of the population quantile Sq is then 

Sq=-st-K-(VAR(st))
1'2 (24) 

The probabiUty PT, where PT equals Prob[a« > Sq] can be estimated by the proportion of st values 
which are greater than Sq. The process involving Equations 23 and 24 is repeated many times so that 
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the PT and Sq values are not effected by further increasing the number of simulations. The range of 
PT and Sq values is a measure of the statistical stability of the sampling process. Particular quantile 
values such as 1% or 99% can be obtained by forming a cummulative probability distribution for Sq 

and PT. The probabilities are ordered from the smallest to largest and their percent is determined 
from their numbered position in the ordering which is divided by the total number of simulations. 
The Sq quantile is the value at the same numbered position of interest. 

RESULTS AND DISCUSSION 

In this section, results are obtained for the AHS round robin problem in Reference 2. A thin 
AISI4340 steel plate with a central hole is loaded by the Felix 28 spectrum. The ASTD S - N curve 
coefficients are used: C = 3.5 xlO6, D = -1.47164 and SE = 54.5KSI. The Su value is 180KSI in 
Equation 2. The number of mesh points nx and n2 of the PDFs in the JDF computation (Equation 
5) are each 50, where Ca = fia and C, = ^,(see Figure 1). 

In Figure 5, representation of reliability as a function of life(JV» is shown for selected CV 
values used in defining the PDFs /„ and /, in the R computation, with a mean load factor(/ia) 
of .70. The results show a very rapid initial decrease in reliability followed by a more moderate 
decline in reliability as the lifetime values increase. Results were the same for other fia values. R 
estimates also decreased with an increase in the assumed CV value. For example, a CV = .05 for 
both PDFs provides a much greater R(.9(n)) estimate than for a CV = .07 which is .9(«) when 
NP = 100. The results designated by the * were obtained from applying lumped PDFs for Aa = 
A2 « 3.5. These values of A are almost the maximum amount of truncations that will provide the 
R - .96 requirement. The maximum truncation was avoided because the R - .% would be met at 
the discrete probability value of the discrete joint distribution which includes the lumped values. 
The R = .96 value from the lumped PDF differs slightly from the unlumped PDF where R = .9s4 
when NP = 50 and the CV = .8. This result indicates that modifications of the extreme lower tails 
of the PDFs do not cause large differences in computing high reliability. 

Figure 6 shows reliability as a function of life for selected fia load factors. As in Figure 5, there 
is a reduction in reliability with an increase in NP values. There is also an obvious decrease in 
reliability with an increase in load factor. In the case where NP = 275, an fia of .5 and .6 resulted 
in R = .9n and .96 respectively. This shows a substantial sensitivity in computing R for a relatively 
small differences which may occur in estimating /xa. 

Figure 7 also shows the reliability values as a function of life(JVp). The assumed CV value for 
the PDFs is .07 and applied loads are fia = .5 and .7. The dash lines represent results from applying 
the contaminated PDFs described in Equations 14 and 15, for the case of 1% contamination in both 
PDFs and kx = 4. This almost undetectable level of contamination caused a drastic reduction in 
reliability for R > .96. The results from the contaminated PDFs application which represent the 
uncertainties in assuming a specific function, demonstrate the importance of identifying precise 
PDFs in computing component high statistical reliability. In contrast, at JV> = 130, the unlumped 
result for of .952 is only moderately reduced from the value of.% obtained for lumped PDFs for A x 
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and A2 = 3.5. 

In Table 2, reliability results are tabulated using both lumped(Äi) and unlumpedf/foi) PDF 
applications for selected CV values. These results show a reduction in RL and RUL values with 
increasing CV values. In the case of CV = .05 and .06, the RL estimate of .976 was the maximum 
obtainable because of the discrete nature of the PDF truncation procedures. Comparing the values 
of RL - -976 with RUL = -9s for CV = .07 shows a relatively small difference in the reliability 
values. This result indicates that uncertainties in modeling the extreme lower and upper tails of the 
PDFs cause relatively small differences in computing high R values. The issue that is important 
involves the substantial reduction in the RL and RUL values with increasing CVs. Since the CV 
values are often estimated from coupon data that are assumed to be relevent to actual component 
behavior, substantial uncertainties can result in estimating R. 

Table 3 shows effects in computing R from applying both contaminated and uncontaminated 
PDF applications. In the case where fia = .5 and NP - 80, the uncontaminated PDF result is 
R > .9i2- When there is a 1% contamination of PDF for the load, the value is reduced to .96. 
Contaminating the strength PDF by 1% resulted in a reduction from twelve nines(uncontaminated) 
to three nines(contaminated) in the R estimate. Very similar results were obtained for contamination 
of both PDFs. As previously shown in Figure 7, obtaining extremely high reliability greater than 
twelve nines will not provide the necessary conservative estimate for R if there is even a very small 
amount of uncertainty in assuming a PDF in the R computation. The case where fia - .7* represents 
application of both the lumped and contaminated PDFs in the R computation. The lumped PDF 
result without contamination showed R = .976 which is reduced to .928955 when the contaminated 
PDF was also applied. Again, this substantial reduction in R demonstrates the importance in the 
accuracy of the PDF. Potential uncertainties associated with denning the extreme tails of the PDFs 
become insignificant relative to the accuracy of PDF assumption in computing high R values. The 
table also shows that by increasing the CV value the Np value is reduced but the reduction in R 
from the contaminated PDF are the same as those for CV = .07. Summarizing the results in the 
table: it is critical in computing high statistical R values that the PDFs are known almost exactly 
while uncertainties in the extreme tails of the PDFs are relatively insignificant. 

Table 4 provides results similar to those in Table 2 except that the load pa is varied in order 
to examine the effects of uncertainty in detennining the mean scaling load factor in the reliability 
- life estimating process. The results again show a substantial difference in R for an uncertainty in 
tia. For example, when /ia = .7, R = .96 and for fia = .8, R = .93662 which implies that there will 
be one failure and 338 failures in a million for loads (ta - .7 and .8 respectively. This substantial 
difference relative to uncertainties in estimating /ia indicates that the R computations are very 
sensitive to uncertainties in the load. The table shows little difference between RUL and RL for 
fia > .7. When fia < .7 no quantitative comparisons are possible because of the PDF truncations. 
The R value for fia = .7 shows a substantial decrease in RUL from approximately .96 to .9389 for 
the uncontaminated and contaminated PDFs respectively. A similar result is shown for RL at (ia = 
.7. The RUL and RL results at /ia = .7 showed a small effect on R with a substantial modification 
of the extreme tails of PDFs. This shows that the PDF assumption is critical in computing R while 
accuracy in representing the extreme tail of the PDFs is much less critical. 
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In Table 5 are the results of sampling a generic normal PDF to examine the stability of the 
statistical estimates at the potential truncation points. The median probability and quantile values 
are shown for a range of sample sizes^). Included in the results are the upper and lower bounds 
on the 98% confidence interval on the median estimates. Reliability{PT) values are obtained at K = 
3.5 and 4.75 where truncation may introduced in high reliability computations in studying effects in 
PDF tail modifications. This was done in order to examine if there is instability in PT at the points 
due to the sample size. The sampling trials were repeated 6000 times which was sufficient to ensure 
that the tabulated values would not change with additional trials. Results from the table indicate 
that relatively unstable PT values will be obtained for even a sample size of 100. In this case, the 
true PT value is .93767 for K = 3.5 but the simulation result shows an inner confidence range of 
.928172 to .9482 for PT values associated with Sq estimates. This uncertainty in the 5, location, 
reduces the validity in assuming that if lumping a PDF does not cause a substantial change in R, 
then the PDF will be adequate for computing high R values such as .96- Another more obvious 
example is the case where n^ = 6 which shows an intervals of .835123 to ,9g8 for K = 3.5 and 
.918483 to 1.0 when K = 4.75. The inner 98% ranges of S4 quantile values for K = 4.75 and K 
= 3.5 also show a substantial overlap. This case shows that even if the lumping process provides 
results showing small differences in R between K = 3.5 and 4.75 (using an unverified assumed known 
truncation point), the inference is meaningless. That is, the substantial uncertainty associated with 
computing R at unverified truncation points prevents making any assessment regarding the need 
for accurate representation of the extreme tail of the PDF in computing .96 R values. 

These results are consistent with results of truncations of normal PDFs8 where, for truncations 
of less than 10 to 20 percent of the population, quantiles would fall within permissible limits of 
random variation, unless sample sizes are very large. Reference 5 shows various levels of uncertainty 
associated with computing high reliability from a stress-strength statistical model as a function of 
sample size. These results relate directly to the sample size issue discussed in this report. 

The substantial sensitivities of R in each of the figures and tables relate to uncertainties in only 
one parameter, while the others are held constant. In design, the uncertainties in more than one 
parameter such as fia and CV could cause increased R sensitivity. There are many complex issues 
involved in obtaining a component population PDF for effective load severity scaling parameter, 
over lifetime. There is no industry standard approach to characterizing the load history and limited 
experience in determining loading PDFs. Therefore, the substantial influence on high reliability 
caused by loading PDF uncertainties could cause a serious problem in the implementation of a high 
reliability requirement. 

These results are based on a single S-N curve, in contrast to the AHS round robin problem 
in which each participant used a different S-N curve. Thus, very substantial variability in the R- 
lifetime relationship can be expected even when the S-N curve shape and mean fatigue limit stress 
is fixed. 

These results and the previous analyses of contaminated PDFs in Reference 5, support the 
concern expressed in Reference 4, for the issue of a decrease in reliability caused by degraded or non- 
conforming components. The approach of attempting to obtain statistically very high R values(.9i2) 
to compensate for uncertainties in assuming a PDF may not provide an effective margin of safety 
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or conservatism relative to a .96 requirement. 

The comparisons between RL and Rui do not directly relate to PDF modeling for design. In the 
approach used in this report the lumped value in the PDF is made exactly equal to the extreme tail 
of a known PDF with which it is being compared. In the design process, the difference of interest is 
between a truncated assumed PDF and a "correct" PDF which is unknown. The lumping approach 
used in this study would tend to minimize the difference between RL and RUL relative to an actual 
design process. 

No conclusion can be reached about an acceptable degree of truncation from this study. For 
\-iand\i < 3.5 it appears that truncation is not acceptable for the .9e requirement. Variation in 
R from less than one "nine" to values approaching two "nines" were obtained for idealized condi- 
tions which minimize reliability differences as noted previously. For Alonc?A2 > 3.5, the sampling 
results indicate that it does not appear to be feasible to obtain satisfactory representation of PDF 
unless very large data sets are available. More important, the issue of acceptable degree of trun- 
cation appears to be of secondary importance relative to the sensitivity of high R to the expected 
uncertainties in assuming a specific PDF representations. 

CONCLUSIONS 

Unstable high statistical reliability values for a fatigue loaded component can result from un- 
certainties in assuming the PDF model and determining its parameters without using very large 
data sets in the analysis. 

Estimates of the extreme tail quantiles and their corresponding reliabilities can be unstable 
unless large data sets are used. 

Analysis of the effects of extreme tail modification does not provide decisive information on the 
adequacy of PDF modeling. Tail modification effects on reliability are small relative to the effects 
of uncertainties in assuming a PDF model. 

The primary conclusion, from the analytic evaluation in this report, is that computation of high 
statistical reliability may have little or no association with actual component reliability. 
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)le 1: Rainflow low-high load sequence dei ived fro m Felix 

*   SL ■Jtn »(*) k SL «m n(*) 

1  2.80 25.59 354 26 42.63 29.21 207 
2  2.80 32.83 334 27 42.63 36.45 1274 

3  6.42 29.21 416 28 46.25 21.97 274 
4  10.04 29.21 609 29 46.25 25.59 6239 

5  10.04 36.45 1228 30 46.25 29.21 4274 

6  10.04 40.07 810 31 46.25 40.07 604 
7  13.66 36.45 2 32 49.87 3.86 268 
8  17.28 18.35 140 33 49.87 25.59 956 

9  17.28 32.83 78 34 49.87 29.21 2179 

10 20.91 32.83 2061 35 53.49 25.59 2 
11 20.91 36.45 90 36 53.49 29.21 116 
12 24.53 -7.00 140 37 57.12 25.59 5 
13 24.53 18.35 140 38 57.12 29.21 185 
14 24.53 36.45 2040 39 60.74 29.21 25 
15 28.15 29.21 833 40 64.36 25.59 7 
16 31.77 25.59 346 41 64.36 29.21 8 
17 35.39 25.59 7904 42 64.36 32.83 75 
18 35.39 29.21 56 43 67.98 29.21 9 
19 35.39 32.83 71072 44 71.60 29.21 16 
20 39.39 43.69 2529 45 75.22 25.59 7 
21 39.01 21.97 3014 46 78.84 18.35 5 
22 39.01 25.59 42825 47 78.84 25.59 1 
23 39.01 29.21 6393 48 82.46 21.97 128 
24 39.01 43.69 252 49 82.46 29.21 16 
25 42.63 25.59 480 50 89.70 25.59 8 
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Table 2:   Reliability from lumped and un- 
lumped PDFs as a function of the CVs 

CVs Rl RUL 

0.05 >.976 ■9n 

0.06 >,976 •9r 
0.07 .976 ■96 

0.08 .954 .9483 
0.09 .9430 .93885 
0.10 .93646 .93533 

RL • Reliability from lumping PDFs 
RUL - Reliability from normal PDFs 
CVs - Coefficient of variations 
NP = 80 Passes, fia = .70 Load factor, SE =54.5KSI Strength 

Table 3: Effects of individual PDF contaminations on reliability estimates 

(*° CV | NP |   Ru   |   RCL   |   Res  |  RCLS  | 

.5 

.7 

.7' 

.7 

.07 

.07 

.07 

.10 

80.0 
80.0 
80.0 
4.0 

>-9l2 
>.96 

>.976 
>.96 

.9s 
.93730 
-93733 
.93848 

•93816 
,93186 
.93224 
.93092 

.93814 
.928914 
•928955 
.928940 

* Both tails of PDFs are lumped at 3.5 <r 
Ru - Reliability uncontaminated PDFs 
RCL - Reliability contaminated(l%) load(a) PDF 
Res - Reliability contaminated(l%) strength(5E) PDF 
RCLS - Reliability from both load and strength PDFs contamination 
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Table 4:   Reliability from lumped and un- 
lumped PDFs VS. Load /ia 

Palpha RuL ÄL 
0.4 >.9l2 >.9T 

0.5 > .9i2[.999814]* .97130 
0.6 ■9io .97297 
0.7 .96[.998914]' .9T[.9989551* 

0.8 .999662 .999724 
0.9 .984984 .984710 
1.0 .855658 .851946 

RL - Reliability from lumping PDFs 
Rvi - Reliability from unlumped PDFs 
* Results from contaminated PDFs 
NP = 80 Passes And CVs = .07 

Normal PDF ß = 100, CV = = .10 

N 
Median Lower Bound Upper Bound Median 

K = 4.75 
Lower Bound Upper Bound 

6 .999480* 
(67.07)" 

.835123 
(90.82) 

.9978 
(37.23) 

.9s58 
(55.10) 

.918483 
(86.67) 

1.00 
(16.56) 

10 .999669 
(66.00) 

.925734 
(85.04) 

.9786 
(43.75) 

-9581 
(54.04) 

.987086 
(78.07) 

■9l3 
(24.78) 

20 .999721 
(65.48) 

.981327 
(78.92) 

.966 
(50.64) 

.9584 
(53.36) 

.998403 
(70.56) 

•9io7 
(34.27) 

50 .999745 
(65.36) 

.995914 
(73.92) 

.9S4 
(56.13) 

.9s9 
(52.81) 

.999845 
(63.95) 

.9881 
(41.14) 

100 .999760 
(65.13) 

.998172 
(71.05) 

.9482 
(59.01) 

•959 
(52.68) 

.9460 
(60.52) 

.»8 

(43.74) 

1000 .999765 
(65.02) 

.999524 
(66.96) 

.999890 
(63.07) 

•96 

(52.52) 
•956 

(55.11) 
.967 

(49.99) 

*Fr Probability 
•• Conesponding 5, quantile value 
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Wavelets and Nonparametric Function Estimation: 
A Function Analytic Approach 

Abstract: The problem of nonparametric function estimation has received a substantial 
ataount of attention in the statistical literature over the last 15 years. To a very large 
extent, the literature has described kernel-based convolution smoothing solutions to the 
problems of probability density estimation and nonlinear regression. Among the sub- 
cultures within this literature has been a substantial effort at smoothing spline 
solutions. In the present paper, we discuss a general function analytic formulation of 
the problem. We show that a basis which spans L2(R) can be used as a tool for 
constructing computational algorithms for optimal solutions to the generalized 
nonparametric function estimation problem. In particular wavelets form a doubly 
indexed set of basis functions for L2(R) and may be used for computing optimal 
nonparametric function estimates. We discuss the basic theory of wavelets, and discuss 
connections of wavelets with multiresolution analysis, sub-band coding and conventional 
spectral analysis. We demonstrate the construction of compactly supported wavelets 
and illustrate the fractal character of a simple wavelet. We conclude our paper with 
with a discussion of the relationship of wavelets to nonparametric function estimation, 
to time series analysis, to signal processing and to fractal geometry. 
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Wavelets and Nonparametric Function Estimation: 
A Function Analytic Approach 

1.  Introduction. 

Wavelets have captured the enthusiasm and imagination of many applied 

mathematicians and engineers both because of their important applications in signal 

and image processing and other engineering applications and also because of the 

inherent elegance of the techniques. Wavelets are described in detail in a number of 

locations. Much of the fundamental work was done by Daubechies and is reported in 

Daubechies, Grossman and Meyer (1986) and Daubechies (1988). Heil and Walnut 

(1989) provide a survey from a mathematical perspective while Rioul and Vetterli 
(1991) provide a survey from a more engineering perspective.   The new book by Chui 

(1992) is an excellent integrated treatment which I believe is more mathematically 

sophisticated than the author supposes. In spite of its title as an introduction, it 

requires somewhat more mathematical depth and maturity and is best regarded as more 

of a monograph. 

This present paper describes the basic wavelet theory in the context of the 

general statistical problem of nonparametric function estimation. Wegman (1984) 

describes a basic framework for optimal nonparametric function estimation. This 

framework captures the optimal estimation of a wide variety of practical function 

estimation problems in a common theoretical construct. Wegman (1984), however, only 

discusses the existence of such optimal estimators. In the present paper, we are 

interested in combining this optimality framework with more general wavelet and frame 

algorithms as computational devices for general optimal nonparametric function 

estimation. A new application of optimal nonparametric function estimation is found in 

Le and Wegman (1991). 

In section 2, we discuss the optimal nonparametric function estimation 

framework. In section 3, we turn to a discussion of the general function analytic 

framework which leads to bases and frames. Section 4 introduces the notion of a 

wavelet basis and demonstrates the connection with Fourier series and Parseval's 

Theorem. In section 5 we turn to a spectral interpretation and show how the signal 

processing connection may be exploited to construct scaling functions and wavelets. 
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Finally, in section 6, we provide a synthesis of the connections among the varied 

elements of nonparametric function estimation, functional analysis, wavelets, time 

series, and signal processing. 

2.  Optimal Nonparametric Function Estimation. 

Consider a general function, f(x), to be estimated based on some sampled data, 

say x1? x2,..,xn. This is, in fact, the most elementary estimation problem in statistical 
inference. Often the function, f, in question is the probability distribution function or 

the probability density function and most frequently the approach taken is to place the 

function within a parametric family indexed by some parameter, say 9. Rather than 

estimate f directly, the parameter 8 is estimated with fy then being estimated by fg a U. 

Under a variety of circumstances, it is much more desirable to take a nonparametric 

approach so as to avoid problems associated with misspecification of parametric family. 
This is particularly the case when data is relatively plentiful and the information 

captured by the parametric model is not needed for statistical efficiency. 

Probability density estimation and nonparametric, nonlinear regression arc 

probably the two most widely studied nonparametric function estimation problems. 

However, other problems of interest which immediately come to mind are spectral 

density estimation, transfer function estimation, impulse response function estimation, 

all in the time series setting, and failure rate function estimation and survival function 

estimation in the reliability/biometry setting. While it may be the case that we simply 

may want an unconstrained estimate of the function, it is more often the case that we 

wish to impose one or more constraints, for example, positivity, smoothness, isotonicity, 

convexity, transience and fixed discontinuities to name a few appropriate constraints. 

By far, the most common assumption is smoothness and frequently the estimation is via 
a kernel or convolution smoother. We would like to formulate an optimal 

nonparametric framework. 

We formulate the optimization problem as follows. Let % be a Hubert space of 

functions over R, the real numbers (or C, the complex numbers). For purposes of the 

present paper, we assume R rather than C unless otherwise specified. The techniques we 

outline here are not limited to a discussion of L2(R) although quite often we do take % 

to be 1*2-   In this case, we take 

f,g> = }f(x) g(x) dfi(x), 
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is the familiar cubic spline. 

The basic idea is to construct S C % where S is the collection of functions, g, 

which satisfy our desired constraints such as smoothness or isotonicity. We wish to 

optimize Kg) over S. The optimized estimator will be an element of S and hence will 

"inherit whatever properties we choose for S. The estimator will optimize 1(g) and 

hence will be chosen according to whatever optimization criterion appeals to the 

investigator. In this sense we can construct designer estimators, i.e. estimators that are 

designed by the investigator to suit the specifics of the problem at hand. 

Of course, in a wide variety of rather disparate contexts, many of these 

estimators are already known. However, they may be proven to exist in a general 

framework according to the following theorem. 

Theorem 2.1: 

Consider the following optimization problem: 
Minimize (maximize) A(f) subject to f € S C %. 

Then 
a) If % is finite dimensional, I is continuous and convex (concave) and S is closed 

and bounded, then there exists at least one solution. 
b) If % is infinite dimensional, I is continuous and convex (concave) and S is 

closed, bounded and convex, then there exists at least one solution. 

c) If L in a. or b. is strictly convex (concave), the solution is unique. 

d) If % is infinite dimensional, L is continuous and uniformly convex (concave) 

and S is closed and convex, then there exists a unique solution. 

Proof: A full proof is given in Wegman (1984). For completeness, we outline the basic 

elements here, a) For the finite dimensional case, S closed and bounded implies that S 

is compact. Choose f„€S such that l(fn) converges to inf{l(f): f€S). Because of 

compactness,  there is a convergent  subsequence fn    having a limit,  say f*.     By 

continuity of L 
l(f,) = liml(fn.)=infU(f):f€S}. 

f„ is the required optimizer. For part b), we have the same basic idea except that S 

closed, bounded and convex implies that S is weakly compact. We use the weak 

continuity of I.   Uniqueness follows by supposing both f«, and f»„ are both minimizers. 

298 



where p is Lebesgue measure.   We emphasize that this is not absolutely required.   As 

usual || f || = y/<f, (> . A functional 1:%-*H is linear if 

l(ai+0g) = al(i) + 02(g), for every f, g € % and a, /? € R. 

Z is convex on S C Dt if 

2(tf+ (1 - t)g) < t2(f) + (1 - t)2(g), for every f, g € S with 0 < t < 1. 

2 is concave if the inequality is reversed.   2 is strictly convex (concave) on S if the 

inequality is strict.  2 is uniformly convex on S if 

a(f) + (i-t)x(g)-2(tf+(i-t)g)>ct(i-t)iif-gn2 

for every f, g e S and 0 < t < 1. 

We wish  to use 2  as  the general objective functional in our optimization 

framework.   For example, if we are concerned with likelihood, we may consider the log 

likelihood, 
n 

2(f) = £ 1°S f(xi)> *i are a raodom sample from f. 
i~l 

If we have censored samples we may wish to consider 

l($) = £ *i log gfc) + ± (1-6,) log G(x,.), 
t 3 1 t = 1 

xi   again   a   random   sample,   St   a   censoring   random   variable,   G = 1 - G,   and 
z 

G(x) a j  g{u)  du.    This is the censored log likelihood.    Another example is the 
— 00 

penalized least squares.  In this case 

n b 

^(g)=i;(yi-gW)2 + Af(Lg(u))2du. 

Here L is a differential operator and the solution of this optimization problem over 

appropriate spaces is called a penalized smoothing L-spline. If L = D? then the solution 
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Then 
i(tf, + (l-t){..)<a,(f,) + (l-t)J»(f„) = inf{i(f):feS}. 

This implies that neither f, nor f„ is a minimizer which is a contradiction.   □ 

This theorem gives us unified framework for the construction of optimal 

nonparametric function estimators. It does not, however, give us a definitive method 

for construction of nonparametric function estimators. We give a constructive 

framework in the next several sections. In closing this section we refer the reader to 

Wegman (1984) for the complete proof of Theorem 2.1 and many more examples of the 

use of this result. 

3. Bases and Subspaces. 

In this section, we discuss the basic theory of spanning bases and their 

application to function estimation. Consider f, g € %■ f is said to be orthogonal to g 

written f 1 g if < f, g > = 0. An element f is normal if || f || = 1. A family of elements, 

say {e^: A e A} is orihonormal if each element is normal and if for any pair ej, e^ in the 

family, e1 J. e2. A family {eA: A e A} is complete in S C X if the only element in S which 

is orthogonal to every e^, A 6 A is 0. A basis or boat of S is a complete orthonormal 

family in S. A Hilbert space has a countable basis if and only if it is separable, i.e. if 

and only if it has a countable dense subset. Ordinary Lp spaces are separable. We are 

now in a position to state the basic result characterizing bases of Hilbert spaces or 

subspaces. We write Jpan({eA}) to be the minimal subspace containing {eA}. This is 

the space generated by the elements {e^}. 

Theorem 3.1: 

Let % be a separable Hilbert space.   If {et}fL x is an orthonormal family in 34, 

then the following are equivalent. 

a) {ejJjfL j is a basis for %. 

b) If f €X and f 1 e£ for every k, then f = 0. 
c) Iff 6%, then   f=£ <f, et>efc.  (orthogonal series expansion) 

d) If f, g 6 %, then < i, g > = £ < f, ek > < g, efc > . 

e) If f 6 %, I! f I!2 = 2 I < f, e*fcV |2.   (Parseval's Theorem) 

Proof: 

a => b:  Trivial by definition. 
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b => c: We claim % = span^e^}). If not there is f/0, fe3G such that 

f I span( {eA}). This implies that f 1 ek for every k. But f 1 ek for every k and f # 0 is a 

contradiction to the {ek} being a basis. Let %k = span(eit). Then % - span( u %k) = 

Z ^^  This implies that for f € 36, 

00 

(3.1) ^kLtCkek. 

Substituting (3.1) in the expression for the inner product yields 

< f, e;- > = < Z k 
ck ek> ej > =kt^k < e*> ej > ■ 

By the orthonormal property, <ejfc, e > = 1, if k = j and = 0, otherwise.  It follows that 

< f, e,- > = c •.  Thus 

(3.2) f= Z <f, ek>ek. 

c => d:   < f, g > = < f,   Z < S> «t > ei > s 2  < g, et > < f, e^ > . 

d => e:  Let f = g in part d. 

e => a:  If f €% and f let for every k implies  <f, et> «0 for every k.   This in 

turn implies that || f || = 0. Thus f = 0. This finally implies {e^ is a basis.   D 
OB 

Thus given any basis {CL}L, we can exactly write f = Z ck ek aa" we can 

estimate f by Z ?k et* Thus a computational algorithm for the optimal nonparametnc 

function estimator can be based on this result from Theorem 3.1.C However, this does 

not yet take into account the "design" set, S. In order to more carefully study the 

structure of S we consider the following result. In the following discussion let S C %. 

Then define S L ={feK: flS}, 

Theorem 3.2: 

If S C % is a subset of %, then 

a. S -1 is a subspace of % and S n S X C {0} 

b. ScS1 L = span(S) 

c. S is a subspace if and only if S = S ± x. 
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Proof: S x is a linear manifold. To see this if fj, f2 € S x , then for every g € S, 

<a1f1 + a2f2, g> =*i<fi, g> +a2<f2' 8> -ai 0 + ^.0 = 0. Thus atfy + a^ 6S ± . 
This implies S "Ms a linear manifold which is sufficient to show that S -1 is a subspace 

provided we can show S 1 is closed. To see this if f € closure {S1), then there exists 

'{fnJcS1 such that f = Iim fn and for every g g S, <fni g> =0. But <f, g> = 
lim < f„, g > = lim 0 = 0. This implies f 1 S which in turn implies f € S -1. Part b 
follows from part a by replacing S by S -1. Part c is straightforward application of the 

two previous parts.     0 

Suppose now that we have a basis for X, call it {ek} j£L v This basis obviously 

also spans subset S of % and hence any of our "designer" functions in S can be written 

in terms of the basis, {e^}*-!. The unnecessary basis elements will simply have 

coefficients of 0. In a sense, however, this basis is too rich and in a noisy estimation 

setting superfluous basis elements will only contribute to estimating noise. As part of 

our "designer" set, S, philosophy, we would like to have a minimal basis set for S. 

Theorem 3.2 gives us a test for this condition. Consider a basis {e^Jf^i for 36. Form 

B5 which is to be a basis for S. We define B5 by the following routine. If there is a 

g € S such that < g, ek > # 0, then let ek e B5. If on the other hand there is a 

geSxsuch that <g, ek> *0, then let e^B^. Unfortunately, it may not be thai 

B-ynB x =0. But this algorithm yields {et}*BjuB i- Moreover Scspan(B5). 

Thus we may be able to eliminate unnecessary basis elements. We may also be able to 

re-normalize the basis elements using a Gram-Schmidt orthogonalization procedure to 

make B5 ± B5 . Usually if we know the properties of the set, S, we desire and the 

nature of the basis set {e^}, it will be straightforward to construct a test function, g, 

with which to construct the basis set, Bs, If S is a subspace, then S = span(Bs). In any 

case we can carry out our estimation by 

(3.3) f = £  ckek. 

In  a completely noiseless  setting  (3.1)  is  really  an equality in norm, i.e. 

|| f - £kckek || ■ 0.  If X is L2(/i), with \t Lebesgue measure, then (3.1) is really 

(3.4) f = 52 kckek' almost everywhere \i with ck = < f, ek > . 

This choice of ck is a minimum norm choice.  However, in a noisy setting, i.e. where we 
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do not know f exactly, we cannot compute c^ directly.   However, we may be able to 

estimate c^ by standard inference techniques. 

Example 3.1.   Norm Estimate.   The minimum norm estimate of c^ is the choice which 

minimizes || f - £ kckek II» *e- ck ~ K *' ek > •  ^ ^e ^2 context, 

<f, ek> = |f(x) efc(x) d/i(x). 
R 

If f is a probability density function, then   <f, ek> » E[et] which can simply be 

estimated by n"~ l£"_ ^(x ■), where x , j ä l,...,n is the sample of observations. 

Example 3.2.    General Form of Estimate.   In the general context with optimization 

functional A we have 

(3.5) 1(f) «i|    £ cjei)*%}) -4    £ C*e*)- 
Since (3.5) is a function of a countable number of variables, {ct}, we can find the 

normal equations and with the appropriate choice of basis, find a solution. For this we 

will typically assume I is twice differentiable with respect to all ck. A wide variety of 

bases have been studied. These include Laguerre polynomials, Hermite polynomials and 

other orthonormal systems. Perhaps the most well-known orthononnal system is the 

fundamental sinusoids which span L2(0, 2*). From the title and theme of this paper, 

one might reasonable guess that wavelets form another orthogonal system. We discuss 

the connection in the next section. 

4. Fourier Analysis and Wavelets. 

4.1 Bases for 1^(0, 2x). 

Let us consider the set of square-integrable functions on (0, 2ir) which we denote 

by L2(0, 2t). L2(0, 2JT) is a Hubert space and a traditional choice of an orthonormal 

basis for this space has been ek(x) « e,tz, the complex sinusoids. Thus any f in L2(0,2jr) 

has the Fourier representation by Theorem 3.1.c 

*(*) =     52    ci e 

k ä — oo 

»fcr 
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where the constants c^ are the Fourier coefficients defined by 

ct»£jf(x)e-"*Mx. 
0 

This pair of equations represent the discrete Fourier transform and the inverse Fourier 
transform and is the foundation of harmonic analysis. An interesting feature of this 
complex sinusoids as a base for L2(0, 2x) is that ek(x) as e'*x can be generated from the 
superpositions of dilations of a single function, e(x) = etx. By this we mean that 

ejk(x)=e(fcc), **..., -1,0, l,- 

These are integral dilations in the sense that JfeeJ, the integers. The concept of 
dilations of a fixed generating function is central to the formation of wavelet bases as we 
shall see shortly. 

A well known consequence of Theorem 3.1.e for the complex sinusoid basis is the 
Parseval Theorem. For this base, we have 

Theorem 4.1: (Parseval's Theorem): 

(4.1) ||f||2=:f2T|f(x)|2dx=        £      |Cfc|? 

Equation (4.1) is known as Parseval's Theorem in harmonic analysis and states that the 
square norm in the frequency domain is equal to the square norm in the time domain. 

While the space L2(0, 2x) is an extremely useful one, for general problems in 
nonparametric function estimation we are much more interested in L2(R). We can 
think of L2(0, 2T) as with functions on the finite support (0, 2x) or as periodic functions 
on R. In the latter case it is clear that the infinitely periodic functions of L2(0, 2x) and 
the square integrable functions of L2(R) are very different. In the latter case the 
function, f(x) € L^R), must converge to 0 as x- ^ oo. The generating function e(x) = e,x 

clearly does not have that behavior and is inappropriate as a basis generating function 
for L2(R). What is needed is a generating function, e(x), which also has the property 
that e(x)-«0 as x-»±oo. Thus we want to generate a basis from a function which will 
decay to 0 relatively rapidly, i.e. we want little waves or wavelets. 
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4.2 Wavelet Bases. 

Let us begin by considering a generating function 0 which we will think of as our 

mother wavelet or basic wavelet. The idea is that, just as with the sinusoids, we wish to 

.consider a superposition of dilations of the basic waveform 0. For technical convergence 

reasons which we shall explain later we wish to consider dyadic dilations rather than 

simply integral translations. Thus for the first pass, we are inclined to consider 

e (x) == 23' V(2;' x). Unfortunately, because of the decay of 0 to 0 as x-»±oo, the 

elements {e •} are not sufficient to be a basis for L2(R). We accommodate this by 

adding translates to get the doubly indexed functions e-Jx)s2J' V>(2Jx-k). We 

choose V> such that 

f I#*>)|2 .     . . 
auj exists. U) 

Here 0 is the Fourier transform of 0. Under certain choices of 0, e ■ t forms a doubly 

indexed orthonormal basis for L2 (actually also for Sobolev spaces of higher order as 

well). As we shall see in the next section, a wavelet basis due to the dilation-translation 

nature of its basis elements admits an interpretation of a simultaneous time-frequency 

decomposition of f. Moreover using wavelets, fewer basis elements are required for 

fitting sharp changes or discontinuities. This implies faster convergence in "non- 

smooth" situations by the introduction of "localized" basis elements. 

Example 3.1 Continued:  Notice that 

<*** <*'«**> »f   2>^2'x-k)f(x)dx. 

In the density estimation case 

cjfc = Ef2j/2^2'x-k)\       - 

Thus a natural estimator is 

i = 1 

where x,, i = l,...,n is the set of observations. 
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Notice that we can construct a Parseval's Theorem for Wavelets. 

Theorem 4.2: (Parseval's Theorem for Wavelets) 

(4.2)    ||f||2=f       |f(x)|2dx*£ £    lcii4l2=£     . z    IS.il2 

J-oo j'=-oofc=-oo Jt=-oo;=-oo 

We shall give additional interpretation to this equation in the next section. 

4.3 Frames. 

Frames were originally introduced by Duffin and Schaeffer (1952) and have 

become the subject of increased interest with the emergence of the interest in wavelets. 

Frames are a generalization of bases, but share many of the same series representation 

properties of bases. Let {ek)f= x be a collection of elements in %. The collection 

{et}2°_ x is a frame if there are positive numbers A, B such that 

A||f||2<£ |<f,et>|
2<B||f||2. 

A and B are called the frame bounds. If A = B, the frame is said to be tight If no ek 

can be dropped from the frame, then the frame is said to be exact Notice that if 

AsB = l and the frame is exact, then we have 

l|f||2=E l<f,et>|
2. 

fc = i 

By Theorem 3.2, the frame is then a basis. Frames are, in general, not bases, but as 

indicated earlier they share some of the same properties. In particular, if we define an 

operator T by Tf = £ <f, et>et, then T is called the frame operator. It is easy to 

verify that A<f, f>=< <Tf, f> <B<f, f>. T is invertible and if T"1 is the inverse 

operator, then {T"l (et)}?= 1 is also a frame., called the dual frame with frame bounds 

1/A and 1/B. In particular, 

£ |<f,T-1(ei)>l2<illf|l2- 

If the frame is exact, the sequences {ek}fs, and {T * l(ek))f=, are Uortlumonnal, that 

is    <e;,   T~\ek)>=6jk   where   ^ = 1   if   j = k   and  *jjk = 0   otherwise.      Most 
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importantly, 

oo '-1/ (4.3) f=E <f,et>T-|(et) 
k = t 

or 

'-1/ (4.4) {=Zi<i,T-l(ek)>ek. 

The equality (4.4) is a particularly a useful form since it so closely parallels (3.2) which 

is the fundamental method for constructing function estimators with basis functions. 

It is perhaps useful to point out the utility of frames. We see two particularly 

useful settings. First, if we wish to take the union of a finite number of admissible 

spaces, say S,-. Then the union of the bases, ufB5., is a frame for U,-S,-. Secondly, if 
we have an admissible space S with basis B$, but we wish to add a few additional 

elements, say {g^:, j € Z}. Then B u {g^:, ;' e Z} is a frame for the enlarged space. This 

is useful, for example, if we know there are some discontinuities in an otherwise smooth 

(e.g. Sobolev space) space. 

We conclude this section by noting that it is straightforward to show that for 

f, geK, 

<f,g> =2  <f,et> <g,T*1(eJfc)> «£.<£,T-1(et)> <g,efc> 

in analogy to Theorem 3.1.d. Letting f = g in the above, it follows immediately that 

imi2=2 <*,e*> <f,T"1(efc)> 
t = i 

which are frame analogs to the results of Theorem 3.1. 

5. Spectral Interpretation of Wavelets. 

5.1 Continuous Wavelet Transforms. 

We have at this stage alluded to wavelets and frames, but have not really 
explained why a wavelet decomposition is of any particular interest in nonparametric 

function estimation. To appreciate this let us look again at the traditional methods of 

Fourier or harmonic analysis in statistics.   Corresponding to a function f(x), there is a 
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function 

.00 
f(w)af        f(x)e-'w'dx 

which is the Fourier transform of f. The inverse Fourier transform can be computed by 

(5.1) f(x) = 2irf°°   f (w) e*"*dw. 

We may not always have a complete version of ? available so it is useful to have a 

sampled version.  In this case, 

(5.2) f(x)=     £   c4«** 
k = - oo 

which is the so-called discrete Fourier transform alluded to in section 3. Here 

are the Fourier coefficients. The fast Fourier transform (FFT) is a fast computational 

algorithm for computing the discrete Fourier transform. Fourier methods are 

appropriate for analysis of stationary stochastic processes or time series since 

stationarity implies that covariance structure is invariant with time. Because the 

Fourier transform is usually applied to the covariance function to obtain the spectral 

density, the frequency structure of a stationary process is invariant with time. It is 

clear that traditional Fourier methods are not suitable for non-stationary or transient 

stochastic processes. Thus even though the fundamental sinusoids span 1^(0, 2x), the 

series in (5.2) is not a parsimonious representation of f(x) and hence will be slow to 

converge in nonstationary settings. 

It is desirable to localize in both time and frequency. One approach to 

localization in both time and frequency has been the short term Fourier transform 

(STFT) or as it is also known, the Gabor transform given by the expression below. 

!(w,r). f°°   f(x)w*(t-r)e-iwxdx 

where w* is the complex conjugate of w.   In other words the STFT is a windowed 
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Fourier transform. There are unfortunately faults with this idea. The STFT is poor at 

resolving wavelengths longer than the window width, that is, it is poor at resolving low 

frequencies. Conversely, the STFT is poor at localizing high frequencies because the 

window average energy over the window width. That is for fixed window width, the 

STFT time and frequency resolutions are limited by the Heisenberg inequality (time- 

bandwidth product bounded below by (4ff)~1). What is needed is a scheme which 

allows for large window widths at low frequencies and very small window widths at high 

frequencies. 

The basic wavelet idea is to use a transient waveform as in the STFT, but to 

increase time resolution by keeping a constant relative bandwidth as frequency 

increases. As we have seen, we choose a prototype wavelet, 0(t), and consider dilations 

and translations of this mother wavelet t/> which are the affine, wavelets 

^r(t) = v^t/{a(t-r)). 

The continuous wavelet transform (CWT) is defined by 

f(r,a)=f°°    f(x)V£r(x)dx 

and the inverse wavelet transform is given by 

dr da 
a2 (5.3) f(x)=c||f(r,a)0air(x) 

a>0 

This latter equation is sometimes reparametrized with a = e". Just as we deal with a 

Fourier series representation of f, we would like to deal with a wavelet series 

representation. The parameter a (or its surrogate u) is the dilation parameter and is the 

analog of the frequency, w, in the ordinary harmonic case. It is more properly thought 

of as a scale parameter.  The parameter, r, is a time-location parameter. 

As previously indicated, a decrease in scale corresponds to an increase in 

frequency (large scale for low frequencies, small scale for high frequencies). This basic 

concept is illustrated in Figure 5.1. Notice for a STFT, as the frequency increases the 

resolution stays fixed as illustrated by the grid in Figure 5.1.a., i.e. the scale stays the 

same and more cycles are included in the window for higher frequencies as indicated in 

Figure 5.I.e.   This implies an inability to localize at high frequencies for the STFT. 
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Figure 5.1.a Fixed-width grid for STFT. Figure 5.1.C Dyadic grid for wavelet transform. 
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Figure 5.1.b Windowed waveforms for STFT.  Window width is 
constant so more cycles appear at higher frequencies. 
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Figure 5.1.d Daubechies' 20-term FIR-based wavelet with several dilations. 
Dilation compresses or expans waveform, but does not change the number of oscillations. 
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Similarly at low frequencies, the window width stays constant so that only a fraction of 

a cycle may appear within the smoothing window. This implies an inability to resolve 

low frequencies. For the wavelet transform, however, has a waveform with a fixed basic 

structure, V> which is dilated and translated, but otherwise unchanged as illustrated in 

Figure 5.1.d. This implies an increased time resolution at high frequencies as illustrated 

in Figure 5.1.b. Conversely since the scale increases at low frequencies, (i.e. the same 

number of oscillations are included as the waveform is expanded), low frequency 

resolution is also improved. We may discretize the time and scale parameters by a = a£ 

and r = fcr0/a^ where ; and k are integers and the wavelets are 

V>;-*(t) = a^2V{a*t-JfcT0) 

with wavelet coefficients given by 

cijb=|*   f(x)^(x)dx. 

The illustrations in Figure 5.1.b. are for dyadic discretizations, i.e. äQ « 2. If a,,, r0 and 

0(t) have the appropriate properties, we might expect as in the case of Fourier series 

that 

(5-4) f(x)=     £   '    £   c^.t(x). 
ts   -06JS   -«   ' ' 

This is precisely the form we had in section 4 associated with either an orthonormal 

basis or a frame. Thus if we can show that the wavelets either form a basis or a frame 

then the representation (5.4) will obtain. Notice that if a,, is arbitrarily close to one, 

then the double sum in equation (5.4) is a Riemann sum approximation to the double 

integral in (5.3) and hence it is reasonable to believe that such conditions are possible. 

To make wavelets computationally feasible, however, we would like to have a«, = 2, 

Thus we may reasonable ask under what conditions do wavelets form an 

orthonormal basis for L2 or indeed for other spaces. In addition we would like to have 

wavelets with compact support. If the support for the mother wavelet, V>» is oot 

bounded, then every term in the doubly infinite series will contribute to the value of 

f(x) and we will gain little computational advantage to using wavelets. In addition, we 

would like the wavelets to be dyadic, that is, a«j = 2 with r0 = 1.  These choices result in 
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no oversampling so that orthonormal bases are possible. Construction of wavelets under 

such conditions was done by Daubechies (1988) in a computation closely related to the 

idea of multi-resolution analysis. 

5.2 Multi-Resolution Analysis. 

To understand multi-resolution analysis let us first consider the construction of 

space W • - span{^ ,• tf fc € «J} - That is we fix the dilation and consider the space 

generated by all possible translates. For purposes of discussion in this section we take 

ao = 2 and r0 = 1 so that 0iit(x) =s 2j/V(2Jx - *). We may write L2(R) as a direct sum 

of the Wj, L2(R) = £ Wi s0 tixat ^y fanction f € L2(R) may be written as 

f(x) = - + d_1(x) + d0{x) + d1(x) + - 

where d;- € W •. If ^ is an orthogonal wavelet, then W;- J. Wfc, k* j. We shaU assume t/> 

to be an orthogonal wavelet in what follows. Notice that as j increases, the basic 

wavelet form V>(2Jx - Jb) contracts representing higher "frequencies." For each j we may 

consider the direct sum Vj given by: 

.Vj=...+wj_2+wJ._1=m'j:owm. 

The V   are closed subspaces and represent spaces of functions with all "frequencies" at 

or below a given level of resolution. The set of spaces {V;j has the following properties: 

1) They are nested in the sense that V; C V;- + j, ;'6 J. 

2) Closure ( u j. € jV,) = L2(R). 

3) ni€j
vi={0}- 

4) V^-V^W, 
5) f(x) € Vj if and only if f(2x) e V;. +,, j e J. 

1), 4) and 5) follow directly from the definition of Vj. 2) is a straightforward conse- 
quence of the fact that ujgJ Wj=:L2(R). 3) foUows because of the orthogonality 

property. 

Any f e L2(R) can be projected into V;.   As we have seen with j increasing the 

the "frequency" of the wavelet increases which can be interpreted as higher resolution. 
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Thus the projection, P f, of f into Vj is an increasingly higher resolution approximation 

to f as f«x>. Conversely, as j-»-cc,' P.f is an increasingly blurred (smoothed) approxi- 

mation to f. We shall take VQ as the reference subspace. Suppose now that we can find 

a function <t> and that we can define <£_,, *(*) = 2; >(2J,x - k) such that 

V0 = span{^ot: fcgJ}. 

Then by property 5), V=span{<£.- L: JfeeJ}. While we began our discussion with the 

notion of wavelets and have seen some of the consequences, we could have actually 

begun a discussion with the function <f>. 

Definition. A function <£ generates a mvltircsolution analysis if it generates a nested 

sequence of spaces having properties 1), 2), 3) and 5) such that {^o,t> *€«*} forms a 

basis for VQ.  If so, then 4> is called the seating function. 

For the final discussion of this section, let us consider a multiresolution analysis 

in which {V ■} are generated by a scaling function <j> € L2(R) and {W;} are generated by 

a mother wavelet function ^gL2(R). Any function f€L2(R) can be approximated as 

closely as desired by fm for some sufficiently large meJ. Notice fm = fm_! +dm_1 

where fm _ j e Vm _ 1 and dm _ i e W,,, _ j. This process can be recursively applied say I 

times until we have f Sfm = dm_ i+dTO_2+ •+<lm../ + fm_/- Notice that fm_/ is a 

highly smoothed version of the function. Indeed, this suggests that a statistical 

procedure might be to form a highly smoothed (even overly smoothed) approximation 

to a function to be estimated. The sequence dm_j through dm_j form the higher 

resolution wavelet approximations. Many of the wavelet coefficients cm_f- ^ used for 

constructing dm_,-, i=l,..., I are likely to be 0 and hence can contribute to a very 

parsimonious representation of the function f. Indeed, a wavelet decomposition is a 

natural suggestion for a technology for high definition television (HDTV). If fm-_/ 

represents the lower resolution conventional NTSC TV signal, then to reconstruct a 

high resolution image all that is needed is the difference signal which could be 

parsimoniously represented by the wavelet coefficients cfn^i k, i« l,...,l and *e J most 

of which would be 0. 

Most importantly, however, is the observation that the scaling function <f> € V0 

and the mother wavelet V> e W0 implies that both are in Vj.   Since Vx is generated by 
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*1 *(x) = 2l/2^(2x-*)»there *" sequences {g(Jfc)} and (h(Jb)} such that 

(5.5) *(x) = £ 8(*)*(2x ' *) «* *W a £ h(*)*(2x " *)' 

This remarkable result gives us a construction for the mother wavelet in terms of the 

scaling function. These equations axe called the two-scale difference equations. We can 

give a time series interpretation to these equations. Lets consider an original discrete 

time function, f(n), to which we apply the filter 

y(»)-Eg(*)«2»-*). 
k€J 

First of all we note that there is a scale change due to subsampling by two, i.e. a shift 

by two in f(n) results in a shift of one in y(n). The scale of y is only half that of f. 

Otherwise this is a low pass filter with impulse response function g- Let us consider 

iterating this equation so that 

(5.6) ^w-L^'V*). 
*ei 

fM- 

h(nj —{J?)—* 
5J}-<Jj)— 

{5JHEH- ••• 

Figure 5.2  Decomposition scheme for multiresolution analysis. 

Notice that if this procedure converges, it converges to a fixed point which will be <t>. 

This iterative procedure with repeated down sampling by two is illustrated in Figure 5.2 

and is suggestive of a method for constructing wavelets. If g is a finite impulse response 

filter, the construction of a complementary high-pass filter is accomplished with a filter, 

h, whose impulse response is given by h(/-1 - n) = (- l)n g(n).   This scheme is called 
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sub-band coding in the electrical engineering literature. The low-pass band is given by 

(5.7) y0(*)=Eg(*)f-(2n-*) 

while the high-pass band is given by 

(5.8) yi(n)=£h(*)f(2n-fc). 
keJ 

The filter impulses as defined form an othononnal set so that the f may be 

reconstructed by 

(5.9) f(n)= £ [yo(fc)g(2*-») + yi(*)h(2*-n)]. 
keJ 

The sub-band coding scheme may be repeatedly applied to form the nested sequence as 

illustrated in Figure 5.2. The nested sequence of {V ■} is then essentially obtained by 

recursively downsampling and filtering a function with a low-pass filter whose impulse 

response function is g( • )■ 

5.3 Construction of Scaling Functions and Mother Wavelets. 

We have already hinted that the scaling function may be. constructed as the 

fixed point of the down-sampled, low-passed filter equation (5.6). This can be 

formalized by considering what statisticians would call the generating function of g(n) 

and what electrical engineers call the z-transform of g( •). 

(5.10) G(z) 4 £ SCO zi- 

Notice if z = e~,w/2, then (5.10) is essentially the Fourier transform of the impulse 

response function g( •). In this case, the first equation in (5.5". may be written as 

(5.11) "   £(w) = G(z)^),withz = e-,'w/2. 

This, of course, follows because the Fourier transform of a convolution is a product. 

This recursive equation may be iterated to obtain 
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(5.12) ?(«)-§■ G(e-iw'24)j(0). 

We may take J to be continuous and £(0) = 1. Based on (5.12) we may recover <f>( •) 

and based on this result, the equation h(/-1 - n) = (- l)n g(n) and the second equation 
of (5.5) we may recover the mother wavelet, 0(.). Thus Daubechies' original 
construction shows that wavelets with compact support can be based on finite impulse 
response filters which was originally motivated by multiresolution analysis. Theorem 

5.1 below summarizes the Daubechies' result. 

Theorem 5.1:  (Daubechies' Wavelet Construction): 

Let g(n) be a sequence such that 

a) E   lg(»)l |n|£<oofor somee>0, 

b) £   g(»-2j)g(n-2*)**v 

c) E   g(n) = l. 

Suppose that g(w) = G(e "iu/2) = 2 "1/2£   g(n) e",nw/2 can be written as 
n&J 

g(u,) = [Hl+€-
,U'/2n-[   E   f(»)eini 

n € J 
where 

d) E   |f(n)| |n|€ <oo for some e>0 
«6/ 

e) SuPw€RIEnf(n)einw|<2JV-1. 

Define 
h(n) = (-l)ng(-n + l), 

0(x)« j;h(fc)^2x-fc). 

Then the orthonormal wavelet basis is ipjk determined by the mother wavelet 0. 
Moreover, if g(n) = 0 for n > i^, then the wavelets so determined have compact support. 
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We state this result without proof. We note that Daubechies also shows that the 

mother wavelet, ^, cannot be an even function and also have a compact support. The 

exception to this is the trivial constant function which gives rise to the so-called Haar 

basis. Daubechies illustrates this computation with the example of g given by 

g(0) = (l + v^)/8, g(l) = (3 + v/5)/8, g(2) = (3->/5)/8 and, finally, g(3) = (1 - >/3)/8. 

This wavelet is illustrated in Figure 5.3. 

6.  Conclusions. 

One of most amazing insights that can be generated as a result of Figure 5.3 is to 

notice that the scaling function seems to be quite irregular. Indeed, if we look at the 

fine-scale of this function as illustrated in Figure 5.4, we can see that the scaling 

function for this very simple wavelet seems to be self-similar at different scales, i.e. it is 

a fractal. Indeed, the classical method for generating fractals is as the fixed point of an 

iterated function system on a space with a Hausdorff metric. See Barnsley (1988) for 

many more details on fractal geometry. Indeed the first equation of (5.5) together with 

(5.6) shows that <j> is indeed a fixed point of an iterated function system. The wavelet 
representation itself consists of an infinite sum of translates and dilates of a 
fundamental function ip. It is, therefore, not surprising that there is a rather deep 

connection between wavelet analysis and fractals. Both wavelets and fractal geometry 

are at the leading edge of contemporary mathematics. We cannot hope to summarize 

both in one article let alone their connections at their theoretical roots. Nonetheless, 

there is an intriguing connection between the two. 

It is perhaps best to summarize by reiterating the connections we have 
established. We began by addressing the immensely popular and fashionable topic of 
nonparametric function estimation. We showed that this can be cast as an optimization 
problem in functional analysis. The statistical solution to this optimization problem 
can be formulated by finding spanning bases for admissible classes of functions. 

Wavelets form a rather flexible base because of their doubly indexed nature. That is to 

say, where there is considerable fine-structure in the function to be estimated, the 

dilation structure can be made very fine for high resolution. But where there is smooth 

structure one or two simple dilations are sufficient. This localizing property has 
important implications for non-smooth function estimation and opens up a range of 
possibilities not available to the conventional convolution smoothers that dominate the 

current statistical literature. 
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Figure 5.3a.  Daubechies' Scaling Function using 4-term FIR filter. 
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Figure 5.3b. Daubechies' Mother Wavelet using 4-term FIR filter. 
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Next in exploring wavelets in a somewhat deeper fashion, we have seen that they 

have properties as time-frequency generalizations of conventional harmonic analysis. In 

this context they form a methodology for analyzing nonstationary second-order time 

•series. Indeed, the connection with signal processing is even deeper in that the signal 

processing methodologies known as sub-band coding and multiresolution analysis lead to 

a formulation of a constructive algorithm for both wavelet decomposition (and 

reconstruction) and for computing both scaling functions and mother wavelets. A 

theory which links nonparametric function estimation, functional analysis, nonstation- 

ary time series analysis, multiresolution signal processing, wavelet analysis and fractals 

cannot help but be intriguing. I hope this discussion will stimulate further interest. 

One final tidbit to entice further interest. We have seen in our discussion of 

multiresolution analysis that the V • form a nested sequence of lower-resolution spaces 

(smoother spaces). Splines, in particular smoothing B-splines, form a method for low 

pass filtering; thus for constructing a multiresolution analysis. Thus splines can be used 

to construct wavelet bases. Moreover, certain classes of wavelets not only span I^R)« 

but also span Sobolev spaces of finite order. In particular, therefore, splines, which are 

optimizers over Sobolev spaces, may be written in terms of a wavelet basis. Thus to the 

list of rather deeply interconnected topics may be added the topic of splines. 
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Figure 5.4 Daubechies' original 4-term FIR-based scaling function and six zoomed 
bgraphs showing fractal character of this scaling function.  Several of the subgraphs 

have been inverted in order to illustrate the similarities. 
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A parallelized, simulation based algorithm 
for parameter estimation 

Martin Lawera James R. Thompson 
Rice University, Houston, Texas 

Abstract 

The SIMEST algorithm for obtaining estimates of the parameters char- 
acterizing a stochastic process is implemented using a piecewise quadratic 
approximation to a goodness of fit statistic. The implementation is mo- 
tivated in part by the rotatable experimental designs of Box and Hunter. 
Here, however, an "experiment" is simply a computer simulation, so the cost 
of the experiment is, essentially, trivial. Parallelized computation is used on 
a Levco transputer system choosing design points in a fashion so as to maxi- 
mize the utilization of all transputers and the information obtained from the 
simulated data 

1    Introduction. 
The motivation for and an overview of 
SIMEST 

Deep modeling of a stochastic phenomenon might properly begin with a 
basic understanding of the phenomenon expressed as a set of simple axioms 
at the micro level. In the best of all worlds, the next step would be to write 
the likelihood equation, giving the characterizing parameters as a (generally 
complex) function of the data. The third step then, is to find values of the 
parameters which approximately maximize the likelihood. 

The first and third steps are much the easiest. It is the writing down of 
the likelihood which causes the trouble. Experience from biostatistics and 
other fields shows clearly the limitations of this traditional approach. Many 
real-life situations, can indeed be easily microaxiomitized. However, when 
we set out to translate those axioms into a likelihood function, we almost 
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always fail. Writing down the likelihood function requires us to delineate all 
possible pathways which could have produced the data set. If, as is usually 
the case, one state of affairs can be reached by very many different paths, we 
are very likely to get lost. 

Traditionally the problem of going from the "forward" axioms to the 
"backward" likelihood equations is treated as intractable to be replaced by an 
"empirical" (e.g., linear or log-linear) model. Such "empricism" has enabled 
economists to predict ten of the last three recessions. 

SIMEST is a strategy which enables us to use the deep modeling approach 
and estimate the characterizing parameters, without the necessity of writing 
down the likelihood function. This is achieved by assuming a value for the 
parameters of the model and then generating simulated pseudo-data which 
are compared with the actual data. This comparison enables us to update 
our estimate for the parameters. This is, briefly, the idea of SIMEST. 

In more detail, the SIMEST approach consists of three elements. First, 
based on the principles of the process we are modeling, we develop a simula- 
tion. We then use this simulation to produce "pseudo-data", i.e., simulated 
values which can be compared to the real data. 

Secondly, we use some goodness-of-flt function to quantify the conformity 
between the simulated and the real data. Pearson's x2 statistic: 

is a good candidate here. Other candidates and the criteria for choosing 
among them have been discussed in detail by Thompson, Brown and Atkin- 
son [3] and Thompson [4]. 

Thirdly, we perform the simulation for various sets of parameters and use 
an optimization procedure to find the parameter set which produces results 
the closest to the real data. Those values are taken to be the SIMEST 
estimates. 

2    Example: 
Cancer progression model 

The difficulties resulting from the classical approach to estimation are well 
exemplified with the cancer progression model of Bartoszynski, Brown and 
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Thompson [1]. 
In this case, we are studying a population of patients who had been di- 

agnosed with cancer (the primary tumor) at a certain time tD. The patients 
had undergone surgery which removed the primary. Nevertheless, after a pe- 
riod of time they were diagnosed with cancer again (the secondary tumor). 
We want to know whether the secondary had originated from a metastasis 
of the primary, which was not noticeable at the time of surgery, or whether 
it had independently been produced by the systemic mechanism. 

Based on clinical experience, we assume that the metastatic and the sys- 
temic processes obey the following simple axioms: 

1. For each patient, each tumor originates from a single cell, and grows 
exponentially at rate a. 

2. The probability of systemic occurrence of a tumor in (t, t + At) equals 
X*At + o(At), independent of the prior history of the patient. 

3. The probability that a tumor not previously detected, will be detected 
and removed in (*, t + At) is b x Y(t) + o(At), where Y(t) is the si2e of 
the tumor at t. 

4. Until the removal of the primary, the probability of a metastasis in 
{t,t + At)\sßxY{t) + o(At). 

Since both processes as described by those four axioms are modified Pois- 
son processes with intensities growing exponentially in time, it is straight- 
forward to find the distribution functions of the random variables involved. 
Using 

tD for the discovery time of the primary 

tM{ for the occurrence time of the ith 
metastatic secondary tumor 

tSi for the occurrence time of the ith 
secondary systemic tumor 

td for the discovery time of any 
secondary tumor 
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we have: 

FD(tD)   =   1 - exp(- f   beaTdr) 
Jo 

=    l_eip(_Ae^) 
a 

rtMi 
FM(tMi)   =   1 - exp(- /       aeaTdr) 

=   1 - exp[-UatM>-> - eatM^)] 
a 

Fs(tSi)   =   l-e"A<Si 

Fd(td)   =   \-exp{- fbe^dr) 
Jo 

=   i _ exp(_ie
0<<<) 

Continuing from this point on using the traditional maximum likelihood 
methods has proved quite difficult. As showed by Bartoszynski, Brown and 
Thompson [1], the likelihood equations are solvable in closed form only after 
dropping the discovery times for the secondary tumors, i.e. after assuming 
that 

tdSi ~ tSi,    tdMi = tMi 

And even then, the computations involved solving a three dimensional quadra- 
ture: a massive task, even for a modern computer. 

On the other hand, obtaining a SIMEST solution to this problem is 
straightforward. Knowing that random variates from the above distribu- 
tions can easily be generated from t = F~l(u), where u is a C(0,1) random 
variate, we use the following flowchart to simulate the discovery times for 
secondary tumors: 
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1. Generate tD 

2. Generate the sequence {tMi, 1 < i < n}, such that tMn+i > tD 

3. Generate the corresponding sequence {tdMi,l < i < n} 

4. If tdMi, 1 < i < n, is less than tD, set tdM, = oo 

5. Generate the sequence {tSi, 1 < i < m}, such that tSm+i > 5 x tD 

6. Generate the corresponding sequence {tdS,, 1 < i < m} 

7. If tdSi, 1 < i < m, is less than tD, set tdSi = °° 

8. Output min({tdMi, l<i<n}, {tdSi, l<i< m}) 

Sacrificing some of its simplicity, we may make this flowchart more effi- 
cient by halting the generation of f S, at i ~ k if, for some j < k: 

tdSj > tD    and    tSk > tdS, 

Since, as we have found out, the whole process is dominated by the systemic 
tumors, this change significantly reduces the running time. 

On the next stage of the SIMEST procedure, we repeat the simulation a 
larger number of times for various parameter sets. The outputs from these 
simulations form "pseudo-data" sets and are compared to the actual data. 
The similarity between the real and the simulated data is quantified by Pear- 
son's x2 statistic and used by an optimization routine to search for the set 
of parameters maximizing the goodness of fit to the observations. 

3    An optimization algorithm 
for noisy functions 

It is clear from the above overview of SIMEST that an efficient and ro- 
bust optimization procedure is crucial for a successful implementation of this 
method. Unfortunately, most of available optimization routines are ill-suited 
for the task. The goodness of fit statistic that we are trying to minimize is 
based on simulated data and therefore is contaminated with noise. Obviously, 
presence of the noise may be catastrophic for all Newton-type approaches. 
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Direct search methods, such as Nelder-Mead algorithm or STEPIT are 
better candidates for application in SIMEST, and in fact, have been suc- 
cessfully used. These methods, although not designed specifically for noisy 
functions, are usually robust enough to handle the task, although they do 
occasionally converge prematurely, or veer in a completely wrong direction. 
Furthermore, when using those procedures, we try to keep the noise down 
by averaging a very large number of simulations which greatly increases the 
running time. 

Such difficulties prompted us to develop an optimization routine for noisy 
functions. It attempts to combat noise by increasing the number of simula- 
tions at the points where it is necessary and to avoid a direct search by finding 
a minimum through a local quadratic approximation to the goodness-of-fit 
function. Unlike other procedures, however, ours calculates the derivatives 
based on regression and not on finite differences. The design matrix for 
regression is one of the Box and Hunter "cube-and-star-points" rotatable 
design. 

General Description: 

The algorithm starts from an initial guess, provided by the user. Around 
this point, we set up a rotatable design, consisting of 
2B+2xn + n0 points, where n0 is the number of replicates of the center (see 
Figure 1). For example, in the two dimensional case, with no = 2, the design 
points have the following coordinates: 

(0,0),    (0,0)    "center" 

(1,1),   (-1,-1),   (1,-1),   (-1,1)   "cube" 

(1.682,0),  (-1.682,0),  (0,1.682),  (0,-1.682)   "star" 

in the units of the design. 
Next, we calculate the "absolute" coordinates of the design points and 

proceed to evaluate them. 
Evaluation of each point is itself a staged process in an effort to eliminate 

the noise. First seven evaluations (a detail due to the parallel implementa- 
tion) are taken and their mean and the variance are calculated. If the variance 
of the mean is above a prespecified level, another seven values are found and 
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Figure 1 

Box-Hunter "cube and star points" rotatable 
design in three dimensions. 
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the process continues until the variance of the mean is low enough, and then 
the mean is taken as the value of the objective function at this point. 

When all the design points have been evaluated, we use least squares to 
fit a quadratic polynomial to them: 

M&) = A + Eß< 0, + EX>;0.0i 

and then transform the polynomial to canonical form A: 

ue)=ßo+i:ßiQi+£lßiiQ] 
i~l i=l 

What happens next depends on how good the quadratic fit is, as measured 
by the r2 statistic. Suppose the fit is good (r2 > 0.9). Then, based on the 
quadratic approximation, we calculate three quantities: 

1. the minimum 

2. the new rescaling matrix 

3. the new rotation matrix. 

They will be used in the next iteration, unless a better alternative is found 
further on during the present step. The minimum is calculated in the normal 
way, by setting the derivatives equal to zero. However, if it turns out to lie 
far outside of the trust region, we replace it with a point within this region, 
obtained by setting the smallest in the absolute value coefficients in the form 
A to zeio. Next, the minimum is evaluated using the same technique as for 
the design points. 

The rotation matrix is calculated to ensure that the axes of the new design 
will coincide with the axes of the fitted hyper-ellipsoid. 

The new rescaling matrix rescales each «variable by the proportion of the 
total variation of the objective function contributed by this variable. It 
ensures that in the units of the new design, the fitted hyper-ellipsoid will 
approximately be a hyper-sphere. 

If the fit is unsatisfactory (r2 < 0.9), we proceed directly to the next stage 
(still within the same iteration) which is to shrink or to expand the design 
without changing its center. 

328 



Such a uniform rescaling of the design is an attempt to find a better 
quadratic fit. The present design can be suboptimal for two reasons. First, 
it can be too large, so that the objective function is too variable to be ap- 
proximated by a quadratic polynomial. This case will be manifested by low 
r2 and a high range of the function values and a high Error Sum of Squares 
from the regression, in comparison to the level of noise. Then, we divide each 
element of the rescaling matrix by 2 and go back to the evaluation stage. 

On the other hand, if the range of values obtained from the design is small 
relative to the noise and so is the Error Sum of Squares from the regression; 
and if, at the same time the fit is still bad, we would conclude that the 
design is not spread out enough. In this case, there is no quadratic or even 
linear effect in the objective function so that the Explained Sum of Squares 
is very low. There is some variation though due to the noise and it brings 
the Error Sum of Squares up. Notably, the latter kind of variation cannot be 
eliminated since we can only control variation "within" a design point, and 
not between points. Hence, the only solution is to expand the design, so as 
to give the variability of the function itself a chance to show. 

Consequently, if at the beginning of an iteration, we get an unsatisfactory 
fit, we can identify the reason, and act appropriately by either shrinking or 
expanding the design. If the first fit is good, we could use it right away 
and make it the center of a new design, thus beginning another iteration. 
It seems better though to avoid hopping around, and to try both to shrink 
and to expand the initial design hoping for an ever better fit and a more 
substantial decrease in the minimum value. 

The stopping criteria for the rescaling stage are natural: shrinking must 
stop if we arrive at a design which cannot be fit well, apparently because it is 
too small. Similarly, the expansion stops when the design becomes too large 
to be approximated well with a quadratic. In the latter case, an additional 
restriction is needed since if the objective function actually is quadratic, no 
design will be too large. For this reason, we also impos; an upper bound on 
the number of expansions. 

At the last stage of each iteration we choose the center of the design to 
be evaluated in the next iteration. If the smallest value obtained during 
the present iteration is significantly smaller than the value at the present 
minimum, i.e if the expected gain from moving to that point exceeds the 
level of noise, we center the new design there. Otherwise, we do not move, 
but start the new iteration like the previous one, except for the upper bound 

329 



on the level of noise, which is reduced four times. 
The algorithm stops if through subsequent reductions the upper bound 

on the noise has been reduced to a certain minimum, and despite that, no 
move is possible. 

Flowcharts 

We will present now a series of flowcharts which correspond to five levels 
of the algorithm, arranged in the descending order of generality. Hence, the 
upper levels will consist to a large extent in a repeated executions of the 
levels below them. 

The following objects will be referred to: 

0O vector of coordinates of the current minimum, 
i.e. the center of the currently fitted design 

D n x (2n + In + nQ) Box-Hunter design matrix, where n is the 
dimensionality of the problem and n0 is the number of replicates 
taken at the center. 

R n x n diagonal matrix used to transform the units of the design 
into the units of the "absolute" coordinate system 

T n x n matrix which rotates the axes of the design 
to coincide with the "absolute" axes 

Note: The design points as given by matrix D have "absolute" coordinates 
given by: 

T x R x D + 0o 

S(-) the objective function 

EC presepecified by the user upper limit on the level of noise 

CONV user-specified constant in the convergence criterion at level 2 

XR (2n +2n + n0)x[l+n + n{n + l)/2] matrix of regression points 
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X can be written as: 

[1 , (R x D)T , rdn ,..., rdnn] 

where 1 is a column of l's and 

rdij 1 <i <n ,    i < j < n 

is a column vector obtained by elementwise multiplication of the ith and the 
jth columns of (R x D)T 

Level 1 

Input (initial guess): 0O, Ro, T0 

1. Perform the level 2 optimization starting from the initial guess. 
Output: 0i, Äi, 7\ 

2. Perform the level 2 optimization ten times, starting each time from the 
results obtained in (1) 

3. Find Sm,-B(ew-n): the best of results obtained in (2) 

Ouput: 0m.„, 5mtn(0m,'n) 

Level 2 

Input: 0o, Ro, T0, ECo 

1. EC <- EC0 

2. Perform the level 3 optimization using the input values. 
Output: 0x, Ru Tu S(Öi) 

3. Calculate the distance between 0O and ©i 

A0 = ^IIQi ~ ©oll2 
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4. Calculate the gain from (2): 

A5 = 5(0o)-5(01) 

5. If 
A0 > 0    and   AS > 1.5 x VW 

then 
Qo «- ©1 ,   Ro^-Ri,   To «- 7\ ,    anrf    Goto (1) 

6. Else if 
EC > CONV 

then 
EC +- EC/4 ,   and    Goto (2) 

T. Else exit to level 1. 

Ouput: ©a,^, 7^,5(00 

Level 3 

Input: 0o, Ro, T0, EC0, 5(0O) 

1. Perform level 4. Output: Rmin. 

2. Set 
Y «- NULL ,   X «- NULL ,   i *- 0 ,   0i «- 0O 

3. Set Rcur *— Rmin 

4. Increment i by one 

5. Evaluate 
5(0)* = S(T0 xRcurxD + 0i) 

6. Calculate XRCUT 
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X 

8. Set 

7. Set 
X 

Y 
_ 5(0)* 

9. Regress Y on X. 
Obtain: vector of regression coefficients ß and the r2 statistic. 

10. Perform the level 5 optimization. 
Output: 0*, R*, T\ 5(0)* 

11. Calculate the gain from (5): A5 = 5(©i) - 5(0)* 

12. If 

then 

r2>0.9,   A5>1.5xv/£C,   i < 20 

0! ♦- 0*,   Rt *- R*,   Tt^T* 

Rcur «- 2 x i?cur ,     and    Goto (4) 

13. Else exit to level 2 

Ouput: 0i, Ri, Tu 5(00 

Level 4 

Input: 0o, Äo, To, EC0, 5(0o) 

1. Evaluate 
S(©0)* = 5(T0 x Ro x D + 0o) 

2. Calculate XR„ 

3. Regress 5(0O)+ on XR«, 
Obtain: the r2 statistic and the Error Sum of Squares (ESS) 
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4. If 

r2<0.9,  and (ESS <2xEC0,   or Max(S{G0))-Min(S(QQ)) < 1.5XVEC) 

then 

(a) Set RQ <- 2 x RQ 

(b) Repeat (1) - (4) until 

r2>0.9,   or (ESS>2xECQ,  and Max(S(G0))-Min(S(00)) < 1.5xy/EC) 

(c) Exit to level 3 

5. Else 

(a) Set RQ <- 0.5 x RQ 

(b) Repeat (1) - (4) until 

r2<0.9,   and {ESS < 2xEC0,   or  Max(S(eo))-Min(S(G0)) < 1.5x\/EC) 

Set RQ «- 2 X RQ 

(c) Exit to level 3 

Output: RQ 

Level 5 

Input: /?, quadratic fit to the objective function 

Note: This part is based on Box and Draper[2] 

1. Calculate vector b and the matrix B such that the quadratic fit has the 
form: 

y = b0 + XT xb + XT xBxX 

2. Find matrices M and A such that MT x B x M = A 

3. Calculate the minimum 0 < 1/2B~l x b 
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4. If yjjeiF > 1 then 

(a) Set Min(|el|,...,|e„|)«-0 

(b) Repeat (a) until J\\Q\\2 < 1 

5. Calculate the rescaling matrix Ro <- Diag(\ A,- |-1'2) 

6. Set To «- M 

Output: 0o, Ro, T0 

Evaluation 

Input: 0, R, T, EC 

1. Set i 4-0 

2. Evaluate S 10 times at 60 = rxi? x D + 6 

3. Increment i by 7 

4. Calculate the sample mean "3 and the sample variance V of all t eval- 
uations 

5. If V/EC > d-u where C;_i is the 95th percentile of the X;_i distri- 
bution, then Goto (2) 

6. Else exit 

Output: ~§ 
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4    Parallel implementation 

One of the great advantages of the Box-Hunter rotatable design is its suitabil- 
ity for implementation on a parallel machine. For any change to this design, 
i.e. rescaling it or moving its center affects all points in the same way, so 
that what happens at one point is not dependent on what is happening at 
that time at another one. 

Notably, as it is applied in our algorithm, the rotatable design can be 
parallelized in a number of ways. The choice among them depends mostly 
on the number of nodes that are available and on the dimensionality of the 
problem. 

Referring back to the cancer progression model, the problem we are solv- 
ing there is four dimensional. This translates into 16 4- 8 + 2 = 26 design 
points. If we are using so many nodes that the design points can be approx- 
imately evenly split among them, we can assign a point or a group of points 
to each node. All the evaluation is then done independently on each node, 
then the nodes work together to fit a quadratic, find a minimum and decide 
upon rescaling the design. Then, the nodes work separately again. 

If the number of available nodes is several times higher than the number 
of design points, another strategy is called for. We would assign nodes to 
individual points in several concentric designs. If the number of such layers 
is large enough, we can substitute this strategy for rescaling the design. We 
would then simply compare the minima obtained in each layer and pick the 
best one. 

Furthermore, if the number of available nodes does not allow for an easy 
division of work among them, we can come up with a more elaborate sharing 
scheme, so that nodes which finished their jobs sooner could help out those 
still working. This, however, requires designating one node as the "group 
leader", picking information from all the nodes and reassigning their tasks 
as the need arises. Consequently, the programming aspect becomes much 
more complicated, and some of the running time is wasted on the additional 
"hand-shaking". 

Additional consideration comes from the proportion of time necessary to 
do the evaluations to the time necessary for calculating the minimum, rescal- 
ing the design, etc. As our experience indicates, in the case of a simulation- 
based goodness-of-fit function, doing function evaluations takes much more 
time that all the remaining tasks combined. Taking into account that we were 
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working on just seven nodes, we decided that designating one of them as a 
"group leader" and thus taking it off evaluation, would be counterproductive. 

We were still left with the possibility of assigning 4 design points to 
each of 6 six nodes and just 2 points (perhaps those in the center) to the 
remaining node. This would work reasonably well for a four dimensional 
problem, but not so well for two or three dimensional ones (having 10 and 16 
design points respectively). Hence, for the sake of versatility, we chose yet 
another approach. 

We decided to place parallelism directly on the evaluation level, and have 
all nodes work jointly to evaluate each design point. This is the reason 
for taking seven evaluations of each point at a time, which we mentioned 
above. This setup does not require any changes for handling problems of 
various dimensionalities and provides the best use of the resources we used. 
Naturally, under different circumstances one of the possibilities described 
above may be more advantageous. 

5    Numerical examples 

To test our algorithm, we applied it to three optimization problems. The 
starting values, the true minima and the estimates we obtained are given be- 
low. In addition, Figures 2 and 3 contain scatter plots showing intermediary 
steps of the algorithm between the starting point and the final estimate. 

Firstly, we used a simple quadratic function of three variables with addi- 
tive Gaussian noise with the zero mean and the variance of 5. 

Ji(Q) = ©a + ©1 + ©3 + e 

The starting point was: 
5.000000 3.000000 -2.000000 
The initial estimate: 
-0.000000 -0.000000 0.000000 value = 0.170180 
The final estimate: 
-0.000000 -0.000000 0.000000 value = -0.062558 
The true minimum: 
0.000000 0.000000 0.000000 value = 0.000000 
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Figure 2. 

Optimization Paths for the Test Functions 

9   ' 

First three graphs show the optimization paths for the quadratic function, 
the fourth one, for the Rosenbrock function. 

S is the starting point, M is the true minimum 
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Figure 3. 

Optimization Paths for the Cancer Progression Model 

2 

alpha*1e1 alpha"! el 

lambda"! e3 b*1e9 

S is the starting point, M is the minimum 
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Secondly, we used the Rosenbrock function, with additive standard Gaus- 
sian noise (i.e., JV(0,1)). 

J3(0) = 100 * (9? - 02)
2 + (1 - 0O2 + 1 -M 

The starting point was: 
2.000000 1.800000 
The initial estimate: 

1-095556 1.203521 value = 1.025287 
The final estimate: 

0.999584 1.017149 value = 0.992749 
The true minimum: 

1.000000 1.000000 value = 1.000000 

Finally, we simulated 150 "pseudo-patients" from the cancer progression 
model outlined above and then tried to recover the original paxameters: 

The starting point was: 
a = 5.0e-l    A = 5.0e-3    a = 4.0e - 10  b = l.Oe - 9 
The initial estimate: 
a = 3.1e-l    A = 2.8e-3    a = 3.5e - 10  b = 1.4c - 9     value = 6.9336 
The final estimate: 
e* = 3.1e-l    A = 3.2e-3    a = 2.0e - 10  6 = 2.3e - 9    value = 6.6280 
The true minimum: 
a = 3.1e-l    A = 3.0e-3    a = 1.7c - 10 6 = 2.3e - 9 

6    Conclusions 

SIMEST is an estimation strategy which effectively bypasses the difficul- 
ties involved in writing down the likelihood function and with solving the 
likelihood equations. For the full success, SIMEST requires an optimization 
procedure which would retain its reliability in the presence of noise but which 
could also avoid unreasonably long running times. 

The procedure presented here has those advantages.   By increasing the 
number of evaluations when necessary, it ensures a low level of noise.   By 
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using regression instead of finite differences, it gives a better picture of the 
function's variation. Finally, it is suited for easy parallelization, as it is based 
on rotatable designs. 
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ABSTRACT 

We examine the applicability of simulation based estimation in complicated stochastic 
processes for which likelihood estimates are not a viable option. Implementation of this 
procedure is considered for homogeneous Poisson processes and birth and death processes 
with consideration given to the use of parallel computing. The statistical properties of the 
estimator are investigated with strong consistency demonstrated for the i.i.d. case. A new 
method of estimating the variance of the estimators is also suggested. 

1. INTRODUCTION 

Often it is the case that stochastic models are easily axiomatized from the properties 
of the physical process under study but it is extremely difficult to obtain the likelihood 
equation from these well understood axioms. Thus the scientist tends to use a determinis- 
tic approximation to the truth which can be solved more easily. If a stochastic component 
is still deemed necessary in the modeling attempts additive error models are usually con- 
sidered. Simulation based estimation or SIMEST offers an alternative to the simplifying 
assumption of deterministic modeling. 

The simulation based estimation method outlined here was originally motivated by the 
work of Thompson, Brown and Atkinson (1987) in modeling cancer progression. Models 
based on simple biological axioms at the micro level lead to likelihood functions of extreme 
complexity at the macro level at which clinical data is available. From the axioms of the 
physical process various probabilities of interest can be obtained which would then enable 
one to establish the likelihood equations for estimation purposes. However, these probabil- 
ities are extremely complex leading to optimization difficulties with the likelihood function. 
The premise of their work was to bypass the tedious development and optimization of the 
likelihood equations by estimating the model parameters and desired quantities directly 
from the model assumptions. 

One class of problems which prove to be difficult or impossible to solve in closed form 
are birth and death models representing processes occurring commonly in epidemiology, 
sociology, and marketing (Eliashberg and Chatterjee (1986)). For example, in epidemiology, 
Bartlett's (1960) stochastic model of a measles epidemic includes a "birth" term 
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03-91-G-0210 and DAAL 03-88-G-0O74. 

This paper was presented at the Thirty-Seventh Conference in this series. 

343 



representing increase in the number of infective persons, which is proportional to both 
the number of infective persons and the number of susceptible persons in the population, 
and a "death" term representing decrease in the number of infective persons due to either 
recovery or death. In sociology, the survival of a social group (such as a political party) 
is described as a stochastic process by Bartholomew (1982). The population is divided 
into "susceptibles" and "spreaders." The number of spreaders increases in proportion to 
the number of spreaders and susceptibles, and decreases (possibly only temporarily) when 
a person ceases to be an active spreader. The death term is the key difference between 
this model and that of the measles epidemic: in the sociological model, "death" may be 
temporary. 

An example in marketing is offered by Bridges, Ensor, and Thompson (1992), who 
suggest that the number of products competing in a particular product category may be 
modeled as a birth-and-death process. Here, "births" are product entries and "deaths" 
are withdrawals from the marketplace. Tapiero (1975) develops a birth-and-death process 
model for sales as a function of advertising, in which "births," or increases in sales, are 
proportional to advertising expenditures and the number of remaining potential customers, 
and "deaths" occur when sales decrease due to customer "forgetting" of the brand. A 
closed form solution may be obtained only if a very simple functional form is assumed for 
advertising expenditures. 

The SIMEST procedure provides an alternative to the complicated problem of es- 
tablishing the functional form of the probabilities; namely, from the axioms defining the 
stochastic process TO realizations of the process are generated at a particular 0 € 9, where 
0 denotes the parameter space. For large m, the average of the simulated realizations will 
approximate the true average for the process. The simulated realizations axe then compared 
to the observed data by a function measuring the disparity, Sn(0)- The estimator of 9 is 
the Value 9 € Ö for which Sn(9) is minimized. 

In the original motivating work by Thompson et. al. (1987), {N(t)} represents the 
time until onset of a secondary tumor in women presented with breast cancer. From their 
database of 116 women presented with primary breast cancer they were able through the 
use of SIMEST to reliably estimate the model parameters thereby obtaining information on 
important questions such as the probability of metastisis prior to detection of the primary 
tumor. For a complete exposition of this problem see Thompson and Tapia (1990, Chapter 
8). The SIMEST method of estimation is also applicable if one observes a single realization 
of a stochastic process, e.g. a birth and death process. The mean path of the process for 
a particular set of parameter values is simulated from the axioms defining the process and 
again, the concordance between the simulated mean path and the observed series indicates 
the viability of the current parameter values. 

SIMEST has been used to successfully estimate parameters in both of the above men- 
tioned scenarios (Bridges, Ensor and Thompson (1992)). It is the purpose of this paper 
to explore the statistical properties of the SIMEST estimator such as unbiasedness, consis- 
tency, and methods of variance estimation as well as the practical issues in implementing 
this procedure. 

2. SIMEST FOR RANDOM SAMPLES 

Consider first a random sample *i,..., t„ of size n from the stochastic process {W(s), 
s > 0} which represents the waiting time until the sth event. In other words, we are given 
n independent observations of the time until a particular event of the process occurs. To 
obtain parameter estimates it is necessary to simulate m observations from this process, or 
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m simulated times until occurrence of the event of interest. 

2.1 Criterion Function 

How should the simulated series for a given set of parameters be compared to the 
observed data? Dividing the time axis into k bins, let p\,.. .,pi denote the proportion of 
the n observations falling into each bin. The number of observations falling into each bin 
follows a multinomial distribution with the probability of any given observation resulting 
in bin j given by p7 for j = 1,..., k and jyj-i Pj = 1- The value of p, is determined by 
the defining stochastic process {#(*)} which depends on the parameter 9. Whenever it is 
necessary to emphasize the dependence on 9 we will denote the true parameter values by 
Pj(0), for j 5= 1,...,*. Now, let Pi(0),. ..,pt(9) denote the proportion of the m simulated 
data points falling into the A; bins. In other words, as an estimate of pj{9) for a given set 
of parameter values we use pj{9). The Pearson goodness-of-fit statistic is given by 

where pj{9) replaces pj{9) for j = l,...,k. The estimator of 9 is the value 9 € 9 which 
minimizes Sn(9). 

Whenever one divides the data into bins for comparative purposes consideration must 
be given to the optimal binning method. The optimal binning for this setting is given when 
pi,... ,pt are all equal to 1/A: but achievement of this objective may not always be possible. 
In addition, a sufficient number of bins must be used to ensure that the process is identifiable 
but too many bins leads to problems associated with estimating small proportions. 

3. SIMEST FOR A SINGLE REALIZATION 

Again let {N(t), t > 0} denote the stochastic process of interest but instead of ob- 
serving n i.i.d values of {N(t)} we observe the process at n different time points, i.e. 
JV(*i),. • •, N{tn). If one can simulate the process {N(t)}, in theory the SIMEST estimator 
can be obtained. As an example of the use of SIMEST in this setting consider a general 
birth and death process. 

3.1 Simulation of Birth and Death Processes 

Consider the counting process N(t) with parameters An and fxn which satisfies the 
following axioms: 

i) P(N(t + At) = n + l|JV(t) = n) = \„At + o(At) 
ii) P(N{t + At) = n - l\N(t) = n) = /«„At + o(At) 

iii) The probability of more than one event in (t, t + At] = o(At). 

From the above axioms it is simple to derive the distribution of the time of the next 
arrival, FB{t) and the distribution of the time of the next exit from the system, fij(t) so 
that 

Ffl(t) = 1 - P{0 births in (t, t + At]} = 1 - e_A*' 

and 
FD(t) = 1 - P{0 deaths in (t, t + At]} = 1 - e""-'. 

Using the inverse c.d.l transformation we obtain obtain the time until the next birth or 
death in our process from 

to-laüJ or t»-!aösi (3-D, 
t/l f2 
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where U\ and Ui represent independent random variables from the uniform distribution 
defined over the unit interval. To simulate the process N(t) we use the following algorithm. 

ALGORITHM TO SIMULATE A BIRTH AND DEATH PROCESS 

1) Simulate U\ and U? from the uniform(0,l) distribution. 
2) Compute tB and tB from (3.1). 
3) Set t = t + min(tB,tz>). 
4) If tD < tB then N{t) = N(t) - 1 else N{t) = N(t) + 1. 
5) lit < maxt and if N(t) > 0 go to 1, otherwise stop. 

If there is a maximum population size, say N, the above algorithm is modified as 
follows: 

ALGORITHM TO SIMULATE A BIRTH AND DEATH PROCESS 

WHEN THE MAXIMUM POPULATION SIZE IS N 

1) Simulate U^ and U? from the uniform(0,l) distribution. 
2) If N(t) - N then set tB = max* and compute tD from (3.1). 

Otherwise, compute tB and tB from (3.1). 
3) Set t = t + min{tB,tD). 
4)UtD< tB then N{t) = N{t) - 1 else N{t) = N(t) + 1. 
5) lit < maxt and if N(t) > 0 go to 1, otherwise stop. 

Now that we have established a method for simulating a general birth and death process 
we again need to consider the question, how should the simulated path and observed series 
be compared? 

3.2 Choice of Sn(9). 

A reasonable way to proceed is to extend the goodness of fit function discussed 
in §2.2 to this setting. Let us consider binning the "time" axis into k bins, namely 
(0,ti],...,(tjt_i,tk]. Let ni,...,nk denote the observed value of {N(t)} at the right 
endpoint of each bin. Let ni(0),. ..,nt(6) denote the average value of the m simulated 
realizations at the respective times. The goodness of fit function will then be given by 

In many scenarios a natural binning arises, for example when a birth and death process is 
observed on a monthly or yearly basis. An important question to consider is whether the 
above method leads to identifiability problems or can the birth rates and death rates be 
estimated separately when only the total count is observed? 

If both the number of births and the number of deaths are observed a better criterion 
function would be a weighted average of proximity measures for both curves. More ex- 
plicitly, let fiji,... nj* and nd 1,..., hik denote the observed number of births and deaths, 
respectively, of the process {A^*)} at time points *i,...,*t and n&i(0),. ..,njjt(0) and 
n<n($),..., ndk{9) denote the average births and deaths of the m simulated series. A rea- 
sonable comparison between the observed and simulated series would be 
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where tu is some appropriately chosen weight function (e.g. the ratio of the total observed 
births to the sum of the total births and total deaths). By separating births and deaths 
we avoid any cancelling effect, thereby facilitating the estimation process. Certainly in 
this situation one can estimate the individual birth and death rates using the SIMEST 
methodology. 

4. THE STATISTICAL PROPERTIES OF THE SIMEST ESTIMATOR 

4.1 Strong Consistency of 9. 

When the objective is to estimate parameters from n independent and identically 
distributed observations from the process {N{t),t > 0} the SIMEST procedure leads to 
strongly consistent estimators of the parameters. Recall, that in this setting the num- 
ber of occurrences in bins 1,...,Jfe follows a multinomial distribution with parameters n, 
Pi(9),... ,pt(0) where {#(*)} determines the value of pi(0), • • .,Pfc(^)- 

Theorem. Let pj denote the observed proportion of n i.i.d. stochastic processes whose 
outcome is within (*j-i,t,] for j = l,...,fc. Let pj(9) denote the proportion of the m 
simulated processes falling into bin j. If pj(B) ^H pj(9) as m -* oo for j = 1,.. .,k and 
all 9 € 9 then 9 ^ 9Q as m, n -> oo where 0O denotes the true parameter value, 9n is the 
inf^e Sn(B) and Sn{9) is given by (2.1). 

Proof. For fixed r», since pj{9) ^ pj(9) as m -* oo for all 9 € 0, Sn(9) is a continuous 
function of (pi(0),... ,pk(9)) and 0 < p,{9) < 1 for j = 1,..., k 

Sn(9) - S'n(9) Ü 0,    asm-* oo 

where 

i-1 PiW 

Now, suppose 9n does not converge with Pe0 probability 1 to 9Q. Then there exists 6 > 0 
such that 

P,o{lim||0-0oll>*}>O 
fl 

which implies 
P,0{lim    inf   AS*n(9) - S*(90)} < 0} > 0. (4.1) 

n   ||«-«oll>* 

But by the SLLN p, ^i pi(90) as n -» oo, therefore S;(0O) ^Oasn-n» which 
contradicts (4.1). Hence, 9n -^i 0O as m, n -♦ oo. 

The condition requiring that the simulated bin probabilities converge almost surely 
to the true bin probabilities is addressed by Thompson, et al. (1987) ; this condition is 
equivalent to the condition that the process is k-identifiable. 

4.2 Confidence Intervals and Variance Estimates. 

One method originally posed by Thompson, et. al. (1987) , of obtaining confidence 
intervals for 9 is to fit a quadratic function to simulated values of the criterion function at 
locally optimal design points and argue that 9 follows a multivariate normal distribution. 
Additionally, one can further exploit the simulation feature of the proposed methodology. 
First, simulate the distribution of Sn(0) and obtain the upper 95th percentile, P95, of 
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this empirical distribution. Then evaluate 5„(0) at every point in A, a square lattice 
of 0. The sample covariance matrix E of the values contained in the set ADS where 
B = {0 : Sn(0) < P95} provides a reasonable estimate of the variation of our estimators. 
The required sampling distribution can then be approximated by a multivariate normal 
distribution with mean 0 and covariance S. 

Also of interest in the application of stochastic processes is estimation of the mean 
path. There are two sources of variation in our SIMEST procedure, namely estimation of 
the parameter values and the stochastic nature of the process itself. We incorporate both of 
these components in our estimation of the mean path by first simulating a parameter value 
from the previously discussed sampling distribution of 0 and then simulating a realization 
from the axioms denning the process. This process is repeated at least 500 times thereby 
yielding an estimate of the distribution of N(t) for each time point t. The estimate of the 
mean path is simply the average at each point in time of the simulated process. Confidence 
intervals for the mean path are given by the lower 2.5th and upper 97.5th percentile at each 
time point with adjustments made for the empirical nature of the limits. 

5. IMPLEMENTATION OF THE SIMEST PROCEDURE. 

In this section, we demonstrate the application of the SIMEST procedure to several 
successively more complex stochastic processes. We also discuss implementation details. We 
first apply the SIMEST procedure to the simplest stochastic process, i.e. the homogeneous 
Poisson process. For two or more bins, the conditions of Theorem 1 are satisfied so that 
the SIMEST estimator of the Poisson rate does converge almost surely to the true rate. 
For 1,000 simulated series from a homogeneous Poisson process with rate one, we estimated 
the rate using the SIMEST procedure with the Nelder-Mead optimization method. The 
mean and standard deviation for this simulation are .955 and .077, respectively. The results 
of this simulation would indicate a bias in the procedure, however, as we show later the 
observed bias is not due to the formulation of the SIMEST procedure but rather with the 
choice of optimization methods. 

A key advantage of this procedure is the ease with which it is parallelized. Much of 
our work was performed on a Levco parallel processor with seven active nodes. In the 
simulation studies which follow, each simulated series is the average of 490 individual series 
(corresponding to seven nodes times seven runs). One crucial step in the SIMEST procedure 
is optimization of the function S(0) over the parameter space. Simulation studies were 
performed using both the Nelder-Mead optimization algorithm (N-M) and a new algorithm 
proposed by Lawera and Thompson (1992) (L-T). Using Nelder-Mead the simulations result 
in biased and highly correlated estimates of the model parameters whereas much better 
results are obtained via the algorithm of Lawera and Thompson. 

5.1 Application to Birth "and Death Processes 

To illustrate that indeed the SIMEST estimation procedure can recover the true pa- 
rameters of a stochastic process, we simulated the mean path over 20 bins for the four 
models given in Table 1 (again based on 490 realizations) and applied the SIMEST algo- 
rithm with proximity measure (3.3) and N-M optimization to the mean path. As expected, 
we obtained very good results whenever the maximum population size N was known. Model 
IV of Table 1 depicts the situation when N is unknown and is also estimated from the given 
data. As suggested by Tapiero (1975) we estimate all the parameters but restrict N to 
mutually exclusive intervals. The final estimates are then chosen from the set of estimates 
within each interval, again so that the criterion function S„(0) is minimized.  Of course, 
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much more work should be conducted on estimation of N before one can reliably use this 
as an option in data analysis. The results of the simulations are summarized in Table 2. 

Consider now the empirical study of the statistical properties of the SIMEST estimator 
for birth and death processes. Table 3 list the results of the different studies for each 
model whereas Figure 1 illustrates graphically the important points. For Model I the 
SIMEST procedure with N-M optimization was applied to 1,000 simulated realizations for 
the true model. The estimates for this model were unbiased and closely follow a multivariate 
normal distribution. The main problem is the strong correlation between the two parameter 
estimates (.88). This is due to the choice of optimization routines not to the fundamental 
concept of SIMEST. For Model II with parameters A= 0.01 and /i=0.03 (different from those 
listed in Table 1) 100 replications of the SIMEST estimator using N-M optimization were 
obtained. When broad starting values are used the estimator is severely biased downwards 
as can be seen in Figure 1. Attempts to reduce this bias leads to strong correlation between 
the two estimates. The problems of bias and correlation are due to the choice of optimization 
routines and not to the conceptual underpinnings of the SIMEST methodology. To illustrate 
this fact, two additional simulation studies were performed using the newly developed 
optimization routine of Lawera and Thompson (1992). Unbiased and uncorrelated estimates 
were obtained for Models II and HI. Figure 1 provides a scatterplot of 250 estimates from 
Model II and histograms of 250 estimates of each parameter in Model HI. 

6. CONCLUSIONS 

SIMEST provides the researcher with the ability to implement the appropriate stochas- 
tic model without the arduous task of solving complicated differential or difference equa- 
tions. For multiple independent observations from one stochastic process, SIMEST leads 
to consistent estimators of the process. SIMEST easily recovered the correct parameters 
when the mean path of the complicated birth and death process (with JV fixed) was input. 
However, for varying JV the estimates obtained from SIMEST are suspect; more work in 
this area is necessary. Repeated applications of SIMEST to single realizations illustrated 
that using the Lawera-Thompson optimization routine the SIMEST estimator possesses 
desired statistical properties (unbiased and small variance). 

Table 1. Birth and Death Processes Considered 

PARAMETER VALUES 

MODEL Mn A„ M Ai A2       JV 

I n/i nAj 25 .35 
II n/i (JV - n)nAx •05 .04 800 
IlB nn (JV - i»)nÄ! .10 .03 800 
III n/i (JV - n)n/JVA1 + (JV - -n)A2 .05 .10 .05     800 
IV (JV ESTIMATED) n/i (JV - n)n/N\i .05 .04 800 
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Table 2. SIMEST Estimates of the Mean Path 

MODEL 
PARAMETER 

VALUE 
SIMEST 
ESTIMATE 

ESTIMATED 

STANDARD DEVIATION 

I .35 
.25 

.3546 

.2565 

.008811 

.011156 

II .04 
.05 

.0399 

.0495 

.000555 

.001069 

III .05 
.10 
.05 

.0496 

.1005 

.0491 

.000578 

.000577 

.000629 

IV .04 
.05 
800 

.04068 

.05020 
806.7 

.001160 

.001137 
19.644 

Table 2. Replicated SIMEST Estimates From Single Realizations 

OPTIMIZATION      NUMBER OF      PARAMETER 

MODEL        METHOD        REPLICATIONS        VALUE 

SIMEST ESTIMATES 

MEAN       STD. DEV. 

I N-M 1,000 .35 
.25 

.3371 

.2398 
.04362 
.04295 

IlB N-M 100 .10 
.03 

.08480 

.02354 
.01473 
.00774 

II L-T 250 .04 
.05 

.04022 

.05008 
.004278 
.003765 

III L-T 250 .05 
.10 
.05 

.04935 

.09897 

.04992 

.01289 

.00835 

.00643 
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Figure 1. Simulation Results for Models I, II and III 
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